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Fig. 1. From only the pose of a headset and controllers, our method reconstructs a matching full-body pose that interacts naturally with various objects in a
simulated environment.

Replicating a user’s pose from only wearable sensors is important for many
AR/VR applications. Most existing methods for motion tracking avoid en-
vironment interaction apart from foot-floor contact due to their complex
dynamics and hard constraints. However, in daily life people regularly inter-
act with their environment, e.g. by sitting on a couch or leaning on a desk.
Using Reinforcement Learning, we show that headset and controller pose, if
combined with physics simulation and environment observations can gen-
erate realistic full-body poses even in highly constrained environments. The
physics simulation automatically enforces the various constraints necessary
for realistic poses, instead of manually specifying them as in many kine-
matic approaches. These hard constraints allow us to achieve high-quality
interaction motions without typical artifacts such as penetration or con-
tact sliding. We discuss three features, the environment representation, the
contact reward and scene randomization, crucial to the performance of the
method. We demonstrate the generality of the approach through various
examples, such as sitting on chairs, a couch and boxes, stepping over boxes,
rocking a chair and turning an office chair. We believe these are some of
the highest-quality results achieved for motion tracking from sparse sensor
with scene interaction.

CCS Concepts: • Computing methodologies → Motion capture; Physi-
cal simulation.
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1 INTRODUCTION
AR/VR (Augmented, Virtual Reality) has the potential to create en-
tirely new social experiences. For example, instead of 2D video calls,
users could interact in a virtual 3D space. To create the feeling of
presence, a user’s avatar must accurately replicate their movement
and body language as well as naturally interact with the environ-
ment. Marker-based motion tracking is inconvenient for such an
experience, since it requires dozens of expensive cameras, a special
suit and tedious calibration procedures. To create a lower friction
experience, recent works have investigated markerless solutions for
motion tracking such as phone video, Inertial-Measurement Units
(IMUs), or Head Mounted Displays (HMDs).

We aim for creating a motion tracking system that allows envi-
ronment interaction and relying only on the pose of the consumer
VR device and environment information as input. Synthesizing full-
body motions from sparse sensors is challenging because many
different poses could potentially match a given sensor input and
generation of the lower body motions is even more challenging
due to the absence of information. In addition to these challenges,
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generating plausible object-interaction motion requires special care.
When users interact with their environments (e.g. sitting on a couch
or leaning on a desk), the system should generate motions using
the environments, which introduces complex physical constraints.
Also, such motions are different from locomotion since the lower
body is not always fully constrained by balancing, so there is more
ambiguity. For example, when sitting on a couch, many different
poses could potentially match a given sensor input.

In this paper, we develop a motion tracking algorithm that takes
as input the headset and controller pose as well as a representation
of the environment and generates full-bodymotions that match both
sensor inputs and its surrounding environment. More specifically,
we use a physically simulated avatar and learn a control policy to
generate torques to drive the simulated avatar via deep reinforce-
ment learning, where the goal is to track the user’s headset and
controller pose as close as possible. Similar to our approach, several
motion tracking systems using physics-based avatars have been
proposed, however, environment interactions apart from foot-floor
contact were not demonstrated [Winkler et al. 2022; Ye et al. 2022].
Other methods [Luo et al. 2022] incorporated artificial forces to
deal with the complex contact dynamics, however these forces can
produce unnatural motions. Instead of using artificial forces, our
control policy is trained to actively use the environment to generate
the appropriate external forces to drive the simulated avatar, where
the strategy is learned from mocap data that includes environment
interaction. As a result, our system generates motions that are phys-
ically accurate and more believable within their environment. For
example, an HMD close to a chair likely implies a user has sit down
compared to just being in a crouching position.

As contributions, we first demonstrate that sparse-upper body in-
put, if combined with physics simulation and environment observa-
tions, can generate realistic full-body motions in highly constrained
environments without using any artificial force. We also show a
non-trivial combination of key technical components are crucial for
achieving high tracking performance and generalization to unseen
real user inputs: Environment representation fed into the policy,
contact reward during learning control policies, and scene random-
ization. To show the capability of our system, various examples,
such as sitting on chairs, a couch and boxes, stepping over boxes,
rocking a chair and turning an office chair are demonstrated where
all motions are generated from unseen real user inputs without us-
ing any cleanup or post-processing (e.g. inverse-kinematics, contact
resolving, smoothing, and etc). We believe these are some of the
highest-quality results achieved for motion tracking from sparse sen-
sor with scene interaction. We also show the capability of a policy
tracking users with scene interaction from the HMD alone without
controllers and a policy without future observations. Finally, we run
ablation studies for the key design choices adopted in our system to
understand how they affect performance and generalization of our
system.

2 RELATED WORK
Motion tracking/reconstruction from a specific sensor is a research
topic that has a long history in computer graphics and computer vi-
sion, so we review previous studies that are most closely relevant to

our approach, which includes synthesizing motions with interaction,
kinematic motion tracking from sparse sensor input, and physics-based
motion tracking.

2.1 Motion Synthesis with Interaction
Synthesizing plausible full-body motions with interaction is re-
garded as one of the notorious problems because the difficulty
grows exponentially as environments get more complex (e.g. the
number of objects in the scene, the types of interactions). Several
data-driven methods have been proposed for solving the problem.
Safonova et al. [2007] optimized transitions in the pre-constructed
motion graph where interactions were modeled as spatio-temporal
constraints. Its extension to multi-character interaction was also
demonstrated [Won et al. 2014] via combining stochastic sampling
and Laplacian motion editing [Ho et al. 2010; Kim et al. 2009]. Due
to the complexity of optimization, patch-based methods have been
proposed, which preserve interaction in a near-fixed state [Henry
et al. 2012; Lee et al. 2006; Shum et al. 2008]. Although complex
and large-scale human-object and human-human interactions have
been demonstrated, they are computationally expensive and offline.
Recently, many deep learning methods have been proposed, where
a mapping from environment states to motions is constructed by a
deep neural network in a supervised manner. Holden et al. [2017]
demonstrated a locomotion controller autoregressively generating
walking motions that adapt to uneven terrain. This idea was ex-
tended for human-scene interaction [Starke et al. 2019] and hand-
object interaction [Zhang et al. 2021] where spatial representations
such as voxel occupancy and proximity sensors were incorporated to
describe the interactions. Our method is also a data-driven method
and adopts spatial representations similar to the methods above to
represent the current state of the environment, however, we syn-
thesize such motions with sparse signals only and less supervision
for the dataset.

2.2 Motion Tracking from Sparse Sensors
Using wearable sparse sensors for human motion tracking received
a lot of attention due to its ease of use and wide applications in
AR/VR (e.g. daily and outdoor mocap). Several systems based on
inertial measurement units (IMUs) have been proposed. Marcard et
al. [von Marcard et al. 2017] takes an offline approach optimizing
pose parameters for the entire frame so that they match with the
input signals. The more popular approach is to use data-driven al-
gorithms, where many proposed systems rely on a mocap database
from which those systems search motion clips (or short segments)
that match the input signals [Andrews et al. 2016; Liu et al. 2011;
Ponton et al. 2022; Riaz et al. 2015; Tautges et al. 2011]. Deep neural
networks (DNNs) have shown promising results on handling high-
dimensional and large data. DNNs learn a mapping from the sparse
input signals to full-body pose through supervised learning with
paired data. Real-time systems predicting local poses with negligible
delay were demonstrated [Huang et al. 2018; Nagaraj et al. 2020] and
global root motions have been improved [Guzov et al. 2021; Jiang
et al. 2022; Yi et al. 2021] . Other than using IMUs, a system based
on wearable electromagnetic field sensors was also proposed [Kauf-
mann et al. 2021]. Because these methods learn complex mappings
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Fig. 2. System Overview.

directly from data while considering only kinematics it is crucial
to have well-prepared and sufficient mocap data for training. In it’s
absence, artifacts such as foot sliding or jittery motions can appear.
Furthermore, motion tracking from sparse sensors that allows full-
body interactions has not been demonstrated yet in this research
direction.

2.3 Physics-based Motion Tracking
Respecting physical laws when tracking user motions can improve
the quality of generated motions. For example, foot sliding or pene-
tration with the ground can be resolved by accurate contact model-
ing and forward simulation. One approach could be applying physics
separately as soft constraints to refine estimated motions [Yi et al.
2022]. However, the most popular approach is to learn a control
policy (a.k.a. controller) minimizing the discrepancy between the
physically simulated characters and user inputs via deep reinforce-
ment learning (Deep RL). Motion tracking from full-body mocap
data have been proposed for a single clip [Merel et al. 2017; Peng
et al. 2018a], interactive kinematic motion controllers [Bergamin
et al. 2019; Park et al. 2019], and large datasets [Chentanez et al. 2018;
Fussell et al. 2021; Won et al. 2020; Yuan and Kitani 2020]. Similar
systems using video clips as input (either ego-centric or 3rd-person
view) have also been demonstrated [Luo et al. 2021; Peng et al. 2018b;
Yuan and Kitani 2019; Yuan et al. 2021]. They have also generated
motions with contact-rich interaction such as sitting on chairs [Luo
et al. 2022]. We also generate motions with contact-rich interactions
as demonstrated in [Luo et al. 2022]. However, our system only
requires the pose of the headset and controllers as input, with no
information about the lower body. We also don’t use artificial forces
to stabilize the simulated character.

This setup is similar to recent approaches [Winkler et al. 2022; Ye
et al. 2022]. However, both approaches demonstrated only minimal
environment interactions. In this paper we explicitly incorporate
scene observations into the policy, which allows the policy to learn
how to use the environment for motion tracking. The policy learns
that sitting on a chair produces external forces that allows it to lift
the leg, or expects an external force when stepping on a box raised
above the floor. It also learns to manipulate external objects like a
tilting chair through the appropriate contact forces. In general, this

policy has a much better understanding of its environment and how
external forces affect its pose.

3 METHOD
As input our method takes a sequence of poses (i.e. 6D transforma-
tions) from a user’s VR headset and two hand controllers, where
the user is interacting with daily-life objects (e.g. chairs, table, and
etc). Our system generates a full-body motion that tracks the user
and their environment interactions in a physically plausible manner.
We assume the 3D scene geometry is known, and can be obtained
by scanning the scene in advance. Figure 2 shows an overview of
our method. We use a physically simulated avatar to enforce the
naturalness in both generated motions and interactions. We train
our policy using mocap data that includes environment interactions.
Training dataset is explained in Section 4.1.

We train a torque-based control policy to simulate the avatar via
Deep Reinforcement Learning (DRL). At each time step, an agent
(i.e. the simulated avatar) observes the state 𝑠𝑡 and performs an
action 𝑎𝑡 . The state is updated to 𝑠𝑡+1 while receiving a reward
𝑟𝑡 that represents the desirability of the transition, the updated
state, and the action. The goal of DRL is to learn a control policy
𝜋𝜃 (𝑎𝑡 |𝑠𝑡 ) (i.e. a tracking controller represented as a deep neural
network with parameters 𝜃 ), which maximizes the expected sum
of rewards 𝐽 (𝜋𝜃 ) = 𝐸 [∑𝑡=1,...,∞ 𝛾𝑡−1𝑟𝑡 ] over the entire trajectory,
where 𝛾 ∈ (0, 1) is the discount factor. We treat the policy output
𝜋 (𝑎𝑡 |𝑠𝑡 ) as the mean of a Gaussian distribution with a fixed, diago-
nal covariance matrix and use Proximal Policy Optimization (PPO)
algorithm [Schulman et al. 2017] to find an optimal policy.

3.1 Simulation Environment
Our simulated character (Figure 3) has 32 degrees of freedom and 18
links and is driven by joint torques. We do not allow self-collision
between the character’s body links. The objects that our mocap
actors interact withmust also be replicated in our physics simulation.
We use primitive geometries like boxes or cylinders to approximate
the real collision shapes. Figure 3 shows an example scene that
includes the simulated character and the environment objects.
We label when and where contacts happen between the actor

and their environment. This information is used as a supervision
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Fig. 3. For accurate contact behavior we approximate all the real shapes
(right) with geometric primitives (left): The character’smesh is approximated
with 18 collision geometries (capsules, boxes and spheres). The environment
objects are similarly approximated with geometric primitives. As long as the
contact surfaces match, the visualization will look accurate. We calculate
masses and inertias of the character and objects based on their collision
geometry and assuming uniform density.

signal during training. The policy learns to leverage contacts with
environment objects to track a user’s motion. The contact labels
are computed semi-automatically by using the simulator’s collision
detection algorithm on the mocap reference motions. Some manual
correction is performed in difficult environments.

3.2 State & Action
The policy outputs action in the range of [-1,1], which we scale
to appropriate torques using each joints maximum torques. The
state 𝑠𝑡 = (𝑠𝑠𝑖𝑚𝑡 , 𝑠𝑢𝑠𝑒𝑟𝑡 , 𝑠𝑠𝑐𝑒𝑛𝑒𝑡 ) at time 𝑡 consists of the simulated
avatar state 𝑠𝑠𝑖𝑚𝑡 , the pose of the users headset and controllers 𝑠𝑢𝑠𝑒𝑟𝑡

, and the scene observation 𝑠𝑠𝑐𝑒𝑛𝑒𝑡 representing the surrounding
environment and objects. These are discussed in the following.

3.2.1 Simulated State. The simulated state

𝑠𝑠𝑖𝑚𝑡 = {𝑞, ¤𝑞, 𝑝, ¤𝑝, 𝑅, ¤𝑅, 𝑓 }

is composed of joint angles 𝑞, link positions 𝑝 , link orientations 𝑅,
their corresponding velocities and contact forces 𝑓 acting on the
links. All values are represented in the avatar-centric coordinate
system (i.e. facing frame) as used in [Winkler et al. 2022; Won et al.
2020]. This frame is defined by the pelvis orientation and position
projected onto the ground. We use the first two columns of the
rotation matrix to represent a link orientation.

3.2.2 Sensor State. The sensor state

𝑠𝑢𝑠𝑒𝑟𝑡 = (𝑜𝑢𝑠𝑒𝑟
𝑡−𝑙 , · · · , 𝑜𝑢𝑠𝑒𝑟𝑡 , · · · , 𝑜𝑢𝑠𝑒𝑟

𝑡+𝑘 )

is a time-window of user observations 𝑜𝑢𝑠𝑒𝑟 = (𝑅ℎ, 𝑝ℎ, 𝑝𝑙 , 𝑝𝑟 ) which
includes the orientation 𝑅ℎ and the position 𝑝ℎ of the headset and
the positions 𝑝𝑙 , 𝑝𝑟 from the left and right controllers.

We only use the position of the controllers, not their orientation.
This is because the controllers orientations proved to be noisy and
less reliable, due to fast motion and user-dependent styles of holding
controllers. Similarly to the simulated character state, the sensor
state is represented in the same avatar-centric coordinate system. In
all our experiments, unless otherwise noted, we use a fixed window
size of 1s of past and future information.

3.2.3 Scene State. In ourmethod, information of the environment is
crucial to make the policy understand and generate motions with en-
vironment interaction. The scene observation 𝑠𝑠𝑐𝑒𝑛𝑒𝑡 = (ℎ1, ℎ2, · · · )
uses a height map to observe the geometrical features of the current
environment. This height map is created from a circular grid cen-
tered around the avatar-centric coordinate and samples the height
at each grid point ℎ𝑖 . The radius of the heightmap is 0.48m and it
includes 120 grid points with 0.08m and 1/20 radian interval.

3.3 Reward
The behavior of the simulated avatar varies depending on the used
rewards. In addition to an imitation reward that has been used in
many other works [Bergamin et al. 2019; Peng et al. 2018a; Winkler
et al. 2022; Won et al. 2020], we also add rewards that are crucial for
natural-looking motions with environment interaction. Our reward
function

𝑟𝑡 = 𝑟imitation + 𝑟contact + 𝑟regularization (1)

consists of three terms discussed in the following.

3.3.1 Imitation Reward. The imitation reward encourages to imitate
the movement of the reference motion

𝑟imitation = 𝑤𝑞𝑒
−𝑘𝑞 ∥𝑞sim−𝑞ref ∥2 +𝑤 ¤𝑞𝑒−𝑘 ¤𝑞 ∥ ¤𝑞sim− ¤𝑞ref ∥2

+𝑤𝑝𝑒
−𝑘𝑝 ∥𝑝sim−𝑝ref ∥2 +𝑤 ¤𝑝𝑒

−𝑘 ¤𝑝 ∥ ¤𝑝sim− ¤𝑝ref ∥2

+𝑤𝑅𝑒
−𝑘𝑅 ∥𝑙𝑜𝑔 (𝑅sim,𝑅ref ) ∥2 ,

(2)

where we measure the difference between our simulated avatar and
the reference motion by joint angles 𝑞, joint angle velocities ¤𝑞, link
positions 𝑝 , link linear velocities ¤𝑝 , and link orientations 𝑅. The sub-
script sim, ref refers to simulation and reference, respectively and
𝑤𝑞 , 𝑤 ¤𝑞 , 𝑤𝑝 , 𝑤 ¤𝑝 and 𝑤𝑅 are the corresponding weights. In theory,
this reward is over-specified because joints and links are simply
transferable via forward kinematics. However, this over-specified
formulation often performs better for many motion reconstruction
tasks, not only in physics-based but also in kinematics-only set-
tings [Holden et al. 2017; Peng et al. 2018a; Starke et al. 2019].

3.3.2 Contact Reward. The contact reward encourages the simu-
lated avatar to create the same contact state as the reference char-
acter

𝑟contact = 𝑤𝑐𝑒
−𝑘𝑐 ∥𝑐sim−𝑐ref ∥ , (3)

where the contact state 𝑐 = (𝑐𝑟𝑜𝑜𝑡 , 𝑐𝑠𝑝𝑖𝑛𝑒 , 𝑐 𝑓 𝑒𝑒𝑡 , 𝑐ℎ𝑎𝑛𝑑𝑠 ) is defined
by multi-hot encoding which each element becomes 1 if the the link
is currently in contact with any object in the scene, otherwise it
becomes 0. We select feet, hands, pelvis and spine for the contact
reward which are the links that take important roles in supporting
the character’s body and leave it open for other links. During train-
ing, the contact state of the simulated character can be noisy, so
we ignore contacts of magnitudes lower than 50𝑁 in the gravity
(i.e. upward) direction. Note that this ground truth contact state is
necessary only for training. In our all experiments, we observed that
the absence of this contact reward significantly degrades overall
motion quality (tracking performance and the naturalness).
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3.3.3 Regularization Reward. The regularization reward greatly
improves the naturalness of the generated motions.

𝑟regularization = 𝑤𝑎𝑒
−𝑘𝑎 ∥𝑎𝑡 ∥2 +𝑤𝑠𝑒

−𝑘𝑠 ∥𝑎𝑡−𝑎𝑡−1 ∥2 , (4)

where 𝑎𝑡 , 𝑎𝑡−1 are the current and previous actions. Because the
action in our simulation setup is a set of torques applied to all
joints, the regularization reward prevents the controller from using
excessive forces or changing forces abruptly.

3.4 Scene Randomization
We randomly vary the object placement during training to prevent
the control policy from overfitting to the training data. Although
larger object variation could further improve generalization, we
randomized the scene in a small range so that the perturbed envi-
ronment does not hugely contradict ground truth motion. It avoids
the simulation becoming unstable during initialization due to the
penetration and does not require motion editing, yet effective in
generalization to unseen real-data In our experiment, the position of
objects is randomly perturbed up to 8cm in all directions including
height, and the orientation is randomly rotated up to 1 radian (≈
5.7 degrees) around the up-axis.

4 RESULTS

4.1 Training
We implement our system using IsaacGym [Liang et al. 2018] for
physics simulation and Torch [Paszke et al. 2019] for deep learning
model. In every iteration of deep reinforcement learning, 61440 tran-
sition tuples are collected from 4096 simulated environments that
are running in parallel on GPUs. We use Proximal Policy Optimiza-
tion (PPO) algorithm [Schulman et al. 2017] where we use clip ratio
0.2, learning rate 1.2e-4, gamma 0.97, lambda 0.95, and minibatch
size 7680, respectively. We use feed-forward deep neural networks
with Tanh activation for both actor (i.e. control policy) and critic
(i.e. value function network), where the width and depth of those
networks are [300, 200, 100] and [400, 400, 300, 200], respectively.
We create an in-house dataset (Table 1) that includes motions

such as sitting on various objects and stepping over boxes, as well
as motions without interaction such as walking, gesturing, and
squatting. We captured the dataset with 5 subjects, except for some
motions (50 subjects for walking, gestures, and writing in the air).
We modeled our character with a single body scale according to the
subject’s height. We mirror all the data to double the data size. We
also captured object placement and motion if it moves.

To demonstrate various examples, we used a relevant subset of the
total dataset to train the policy depending on the task. We included
non-interactive motions (walking, gestures, writing in the air) in all
examples to enhance stable locomotion and hand tracking.

4.2 Evaluation
To demonstrate the performance of our framework we show a vari-
ety of environment interactions, such as sitting on objects, getting
up from the floor, manipulating objects as well as mismatches of
real and virtual worlds that require environment observations. An

Table 1. Training Data Composition

Time(Min) Used Examples

Walking 140 all
Gestures 140 all
Writing in air 116 all
Squat 4.6 all
Bench Interaction 5.62 Living Room
Couch Interaction 16.4 Living Room
Sitting in Box, Chair, Stool 20.02 Living Room

Tilting Chair
Rotating Chair

Tilting Chair 6.98 Tilting Chair
Rotating Chair 3.27 Rotating Chair
Stepping over Boxes 10.8 Stepping Box
Sit on and get up from a floor 10.54 Getting up

overview of all the demonstrations can be seen in Figure 4. We en-
courage readers to watch the accompanying video as it best demon-
strates the physical reasoning our policy has learned and the quality
of the motion tracking.
All evaluations were conducted in unseen object arrangement

and user input. For instance, in the living room example, we com-
bined a couch, a stool, and boxes that were in different training clips
in different locations. We measured the object placement and repli-
cated them in the simulation environment. We did not apply scene
randomization during the evaluation. Sensor inputs were directly
fed from the real VR device. The simulated avatar is initialized in a
default A-pose. A user does not have to start in a strict A-pose, and
as long as they start standing, the system robustly catches up.

We also evaluate our system quantitatively by tracking error, jerk
and success ratio in Table 2. When the average tracking error of the
headset and controller is higher than 0.8m, we assume the character
has drifted and consider it a failure. We measure the tracking error
and jerk when successfully tracking the sensor and do not take them
into account after the failure. We evaluate each test data multiple
times by initializing in all possible frames. Success ratio [20s/30s]
is computed as the ratio of number of episodes that did not fail for
20s and 30s. Success ratio [frame] indicates the average number of
frames successfully tracked during 30s.

4.3 Deliberate environment contact
Most existing approaches are trained only on flat-ground and foot
contact. Our framework is able to deliberately generate contact
forces with the environment to influence its root motion to track
the sensors. One example is the getting up from the ground, where
the policy uses the hands to generate appropriate contact forces.

The box-stepping examples demonstrate how the policy learned
to step on a box to achieve a higher head position to track the
real user. If there were no simulated box, the policy would not
attempt the step. On the other hand our policy also learns to avoid
environment contact if this contact is expected to interfere with the
tracking (Figure 5). We show a user walking on flat ground, whereas
the simulation contains boxes at arbitrary positions. Since contact
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(a) Living Room

(b) Stepping Box

(c) Tilting Chair

(d) Rotating Chair

Fig. 4. Examples Snapshot. The green spheres indicate height map around the simulated character.

Table 2. Performance for various scenarios using real sensors.

Tracking Error
Headset [cm]

Tracking Error
Headset [deg]

Tracking Error
Controller [cm]

Jerk
[km/𝑠3]

Success ratio
[20s]

Success ratio
[30s]

Success ratio
[frame]

Living Room 5.6855 10.977 5.1963 0.3267 0.7689 0.6099 0.8239
Stepping Box 4.1150 7.1939 3.6289 0.4800 0.6683 0.4860 0.7422
Tilting Chair 6.4191 8.2919 5.3416 0.2303 - - 0.7115
Rotating Chair 5.3879 14.0383 5.1379 0.2512 - - 0.7623

Table 3. Impact of specific rewards, observations and training procedures on the living room example.

Tracking Error
Headset [cm]

Tracking Error
Headset [deg]

Tracking Error
Controller [cm]

Jerk
[km/𝑠3]

Success ratio
[20s]

Success ratio
[30s]

Success ratio
[frame]

Ours 5.6855 10.977 5.1963 0.3267 0.7689 0.6099 0.8239
w/o Scene Observation 5.7672 11.045 5.1422 0.3017 0.73620 0.6243 0.8185
w/o Contact Reward 5.6992 9.8969 5.4907 0.4418 0.6060 0.3762 0.7147
w/o Scene Randomization 5.5769 10.8448 4.9798 0.4207 0.6010 0.4145 0.7202

Table 4. Impact of future sensor observations in the living room example. 3-point uses HMD and controllers, 1-point uses headset only.

Tracking Error
Headset [cm]

Tracking Error
Headset [deg]

Tracking Error
Controller [cm]

Jerk
[km/𝑠3]

Success ratio
[20s]

Success ratio
[30s]

Success ratio
[frame]

3-point with 1s future 5.6855 10.977 5.1963 0.3267 0.7689 0.6099 0.8239
3-point with no future 6.8037 12.3596 5.9104 0.4759 0.5948 0.4845 0.7844
1-point with 1s future 6.1253 11.6988 12.1518 0.3527 0.6952 0.4001 0.7049
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with these boxes will likely decrease headset and controller tracking,
the policy learns to lift the leg higher than usual to avoid them.

4.4 Manipulating Objects to improve tracking
Tilting or rotating a chair is a very common behavior people do
in daily life but it involves complex dynamics. With our simulated
approach and environment observations, our approach learns to
manipulate objects in a way to best track a user’s motion.
We model the revolving chair with a revolute joint between the

seat and the bottom. Our training data also includes moving objects
such as the office chair, so the character learns that using feet to
generate a frictional contact force with the ground creates a torque
on the root. This torque can be used to rotate the chair in order
to better follow the users HMD and controller positions. For the
tilting chair, the character understands that pushing its feet into
the ground also exerts a force on the backrest of the chair causing
it to tilt. And it learned that tilting the chair in such a situation is
beneficial for more closely tracking the user’s sensor pose.

4.5 Ablation on design choices
Three crucial components are required to achieve the demonstrated
performance: The scene observation in an appropriate representa-
tion, the contact reward during training which includes not just feet
but various other body parts, and finally the random variation of
the position of objects during training. In Table 3 we quantitatively
show how each component improves the performance. We notice
that especially leaving out the contact reward significantly reduces
the success ratio [30s]. A similar drop in performance can be seen
without scene randomization. Scene observations slightly increase
the success ratio [20s] in this example. For this sitting example,
the policy might be able to infer sitting from the quest pose alone.
The scene observations show more usefulness in the box stepping
videos, where the character raises its feet to avoid contact with a
virtual box. Finally, even though some design choices don’t signifi-
cantly impact the tracking errors, the success corresponds more to
perceived visual quality and is therefore prioritized.

4.6 Ablation Headset only vs Headset and Controllers
We also demonstrate tracking users with scene interaction from
the HMD alone, without controllers (Figure 6 middle and bottom
rows). Even with such limited input, the character is still able to
interact with various objects, albeit with slightly worse metrics
(Table 4 bottom row). In some situations, the model utilizes the
arms in different ways than the user, such as when sitting on a
chair (Figure 6 (14)), in order to better stabilize the body. Due to
the ambiguity of poses, the character may also produce different
upper-body poses (Figure 6 (11)), e.g. where the arms are hovering
over the sofa while the real user is resting the arms on it.

4.7 Ablation real-time vs future
Our framework can be used to track users in real-time, as is shown
in the video. However, the quality of the generated poses degrades
compared to if the policy has access to one future observation. This
degradation is reflected in Table 4 in the lower success ratio, as
well as higher tracking errors. Nonetheless, as can be seen in the

video, qualitatively the motions look reasonable, and the learned
environment interaction of sitting and getting up is still possible.
Access to future information will likely provide the biggest bene-
fit for motions that require future planning, like jumping over a
gap. However, to track day-to-day movements, real-time tracking
provides acceptable results.

5 CONCLUSION AND FUTURE WORK
We demonstrated a physics-based motion tracking framework from
sparse sensors that actively utilizes physical interactions with the
environment to generate natural-looking motions. The policies were
trained using Reinforcement Learning, where our non-trivial com-
bination of the components in the system design (e.g. environment
observation, contact rewards, and scene randomization) enabled the
policy to learn accurate and robust control strategies. We believe
these are some of the highest-quality results achieved for motion
tracking from sparse sensors with scene interaction.

Although we showed the solid performance of our motion system
over a variety of scenarios, there exist several limitations that we
want to address in the future. First, each type of interaction requires
a specialized motion tracker in our current system. It would be ideal
if a single tracker can be learned, which covers wider repertoires.
This might need a more complex neural network model such as a
mixture-of-experts [Won et al. 2020] or longer training time with
larger datasets in general.

We also had a difficulty in reliably producing motions like getting
up from the floor or generally more complex interaction motions.
Since we don’t use any artificial root forces, such behaviors that
require careful coordination of contacts still seem difficult to learn
(getting up from the floor is also a difficult motion to perform for
older people). The simulated avatar used in our system can also
fail (i.e. losing balance) as other physics-based characters, which
incurs the failure of motion tracking of the user. Automatic failure
detection followed by applying external force can be a reasonable
compromise, however, physical realism would be degraded.

Another promising future direction would be extending our sys-
tem for unknown scenes that include dynamically moving objects.
In this case, the ability to infer physical properties (e.g. inertia, fic-
tion coefficients) of surrounding objects in a scene would become
more critical for successful motion tracking. Online system identifi-
cation [Feng et al. 2022; Yu et al. 2017] could be combined as a part
of the system.
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Fig. 5. The user walks on flat ground, whereas we place the virtual boxes in the simulation environment. The policy learns to observe its surrounding scene by
height map and to lift the leg higher to avoid obstacles while tracking the user’s sensor data.

Fig. 6. Collection of real user poses and simulated avatar poses using HMD and wrist trackers (top row) and only HMD tracker (middle and bottom rows).
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