
Inception Attacks: Immersive Hijacking in Virtual Reality Systems
Zhuolin Yang, Cathy Yuanchen Li, Arman Bhalla, Ben Y. Zhao, Haitao Zheng

Department of Computer Science, University of Chicago

ABSTRACT
Recent advances in virtual reality (VR) system provide fully immer-
sive interactions that connect users with online resources, appli-
cations, and each other. Yet these immersive interfaces can make
it easier for users to fall prey to a new type of security attacks.
We introduce the inception attack, where an attacker controls and
manipulates a user’s interaction with their VR environment and ap-
plications, by trapping them inside a malicious VR application that
masquerades as the full VR system. Once trapped in an “inception
VR layer”, all of the user’s interactions with remote servers, net-
work applications, and other VR users can be recorded or modified
without their knowledge. This enables traditional attacks (record-
ing passwords and modifying user actions in flight), as well as VR
interaction attacks, where (with generative AI tools) two VR users
interacting can experience two dramatically different conversations.

In this paper, we introduce inception attacks and their design,
and describe our implementation that works on all Meta Quest
VR headsets. Our implementation of inception attacks includes a
cloned version of the Meta Quest browser that can modify data
as it’s displayed to the user, and alter user input en route to the
server (e.g. modify amount of $ transferred in a banking session).
Our implementation also includes a cloned VRChat app, where
an attacker can eavesdrop and modify live audio between two
VR users. We then conduct a study on users with a range of VR
experiences, execute the inception attack during their session, and
debrief them about their experiences. Only 37% of users noticed
the momentary visual “glitch” when the inception attack began,
and all but 1 user attributed it to imperfections in the VR platform.
Finally, we consider and discuss efficacy and tradeoffs for a wide
range of potential inception defenses.

1 INTRODUCTION
Recent advances in Virtual Reality (VR) hardware and software are
poised to change the way we interact with the world and each other.
VR headsets have the potential to deliver users a deeply immersive
experience comparable to reality itself. They also serve as a way
to bridge vast distances, facilitating enhanced social and (remote)
workplace interactions through the use of personalized avatars or
digital representations of us.

The flip side of these immersive capabilities is that when mis-
used, VR systems can facilitate security attacks with far more severe
consequences than traditional attacks [39]. In particular, VR sys-
tems can use immersive sensory input to manipulate the users
into a false sense of comfort, misleading them to leak private and
sensitive information (e.g. authentication credentials to financial
accounts) or to trust what they see/hear (e.g. gestures, movements,
and conversations).

arXiv, March 2024,
© 2024 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution.

For example, consider the following scenarios:

Scenario 1. Alice spends 4 days a week working remotely out of
her home office via her employer’s new VR application. Each morning,
she puts on her headset and opens the app to start her daily routine.
Today, she notices that the intranet server for her employer companyX
is taking an extra long time to recognize her corporate password in
VR. She makes a mental note to reset her home WiFi router. Elsewhere,
Carl sits and watches his VR headset as it finishes recording Alice’s
login sequence.

Scenario 2. Alice takes off her VR headset in frustration, after
the latest argument with her partner Madison during their normal
VR date night. Madison had been increasingly distant all week, and
actually ended their relationship tonight. Elsewhere, Carl turns off his
generative voice interface and watches in satisfaction as a confused
Madison storms off.

Both scenarios described above result from a single attack, where
an attacker (e.g. “Carl”) compromises the integrity of the users’ VR
system, and inserts his own software in between the user and their
VR layer. Under this attack, users (e.g. “Alice”) are no longer interact-
ing directly with their expected VR counterparts (e.g. “CompanyX’s
servers, Madison”). Instead, users are actually operating in Carl’s
VR layer, interacting with their VR counterparts through a level of
indirection, and these interactions are being monitored, recorded,
and modified real-time by Carl. Given VR’s immersive properties,
Carl is able to replicate the user’s normal interactions with network
servers (similar to a man-in-the-middle attack) and other users in
his own “inception VR layer,” and users are unable to distinguish
which VR layer they are in. Hence, we call this the inception attack1,
and provide a high-level illustration in Figure 1.

Inception attacks are very powerful, because of two properties.
First, they can be extremely difficult to detect, because VR apps are
often designed to approximate the real world and avoid indicators
and prompts that characterize traditional computer applications.
Thus a user currently has no way of authenticating if any part of
their immersive experience (visual or auditory) comes from a par-
ticular VR app (VR authentication). Second, an inception attacker
can take near total control of the VR experience, not only eaves-
dropping and recording data, but also altering information and
experiences for the target user in real time (VR interaction confiden-
tiality and integrity). Not only can an attacker silently observe a
user’s interactions with a VR provider, recording input, passwords,
or other sensitive data, but they can also hijack and replace entire
social interactions. For example, in the aforementioned Scenario 2,
if Alice becomes a target of an inception attack, she can engage in
a one-on-one social interaction with Madison in VR, where both
users only hear and see what the attacker wants them to see and

1The inception attack is inspired by both its namesake, the 2010 Christopher Nolan
film Inception, and movies with similar attacks, including the 2018 Steven Spielberg
film Ready Player One.

2024-03-12 01:11. Page 1 of 1–15.

ar
X

iv
:2

40
3.

05
72

1v
1

 [
cs

.C
R

]
 8

 M
ar

 2
02

4

👤

Remote
VR User/Server

VR Home Screen

VR App Layer

Benign Interactions

👤

Remote
VR User/Server

VR Home Screen

Under Inception Attack

Attacker
Carl

Inception Layer

Simulated
VR App Layer

Figure 1: InceptionAttacks: Auser thinks they are interacting
directly with a VR app launched from the VR home screen,
when they are in fact running a simulated VR app inside the
attacker’s inception layer.

hear. This is made even easier with the use of generative AI tools
that can replicate human voices and generate visual deepfakes.

Inception attacks can be launched on VR systems today by ex-
ploiting any of a number of vulnerabilities. In some cases, vulnera-
bilities are basic issues already addressed in traditional computing
applications, yet overlooked in VR systems. In other cases, tradi-
tional authentication mechanisms are made more challenging due
to the nature of VR applications and interfaces.

In this paper, we identify a broad class of inception attacks and
their dangers to current VR systems and architectures. We discuss
multiple launch points for inception attacks on current VR plat-
forms, describe and evaluate (via user study) an example of an
inception attack on Meta Quest Pro, and analyze a range of security
improvements necessary to limit or prevent inception attacks. To
the best of our knowledge, we are the first to identify, implement,
and evaluate this new attack.

Our work makes the following key contributions.

• We introduce inception attacks, and describe multiple attack vec-
tors that facilitate the successful launching of inception attacks.

• We implement a full inception attack on Meta Quest VR headsets,
capable of hijacking a user’s headset and home environment, repli-
cating and mimicking benign applications (Quest Browser and
VRChat), eavesdropping on user inputs, and altering a variety of
user experiences and user inputs (e.g. modifying user financial
transactions and modifying live user-to-user audio in VRChat).

• We perform an IRB-approved, in-person VR user study with 27 par-
ticipants. In this deception study, participants interact with appli-
cations as their session is hijacked by an inception attack. Roughly
1/3 of users noticed the glitch as their session was hijacked, and all
but 1 attributed the glitch to benign system performance issues.

• We provide a thorough analysis of a range of potential defense
measures, and comment on their efficacy and usability tradeoffs
against inception attacks.

2 BACKGROUND AND RELATEDWORK
As background, we briefly describe how VR systems support a
diverse set of applications, and existing attacks against VR systems.

2.1 VR for Non-Gaming Applications
Initially intended for gaming, VR has already made significant im-
pacts on a diverse spectrum of industry sectors, from architecture
and design [36], education [25, 46], finance [7], social chat and
date [18, 63], healthcare [17, 27, 53, 56], to everyday business opera-
tions [24]. For these sectors, VR is particularly appealing because it
not only eliminates geographical barriers for social and professional
interactions, but also delivers unmatched realism and immersion
that boost awareness and operational efficiency.

To support a diverse range of applications, modern VR headsets
are equippedwith enhanced computing and networking capabilities.
These include GPUs to support local 3D rendering, and wireless
networking modules to ensure smooth connections with devices
and servers. Customized VR systems and tools like Meta Quest
for Business [34] and SideQuest [51] also allow professionals and
individuals to install and manage private apps outside of official
app stores, and for users to find and install non-store content on
their VR devices [5].

2.2 Existing Attacks in VR
We now summarize existing attacks against VR systems.

Malware. Like all other computing devices [60], VR devices are
susceptible to malware. Attackers can introduce malware directly
onto VR headsets by malicious apps, or infect the devices connected
to headsets, which then install malware onto these headsets. Some
privacy attacks have assumed a successful injection of malware to
gain access to VR users’ motion data [28, 29, 54].

Privacy Attacks. To deliver immersive experiences, VR head-
sets employ multiple sensors to continuously gather data on user
activities, giving rise to privacy attacks. A rich collection of ex-
isting works [39] have shown that records of user motion, col-
lected by VR headsets, can be used to reveal private information
such as identity, age, gender, ethnicity, emotion, and health con-
ditions (e.g. [20, 40, 72]). Recent works have also exploited ways
to eavesdrop on individual VR app sessions. The man-in-the-room
attack [62] infiltrated a chat room app called Bigscreen, so that
unauthorized attackers can join a private virtual chat room as an
invisible user and thus observe the behaviors of users in this private
environment. Others show that the avatar’s movements observed
in a shared virtual environment can be used to recover keystroke
content [70] or identity [16, 47].

Perceptual Manipulation Attacks. A recent user study [9]
highlights that if attackers are able to modify tbe screen feed of a
mixed reality (MR) headset, they can introduce physical harm to
users, e.g. creating physical collisions or inducing motion sickness
to its user. Similarly, another work [8] shows that if attackers can
obtain write privileges on VR system configuration files, they can
shift the virtual environment to deceive users into adjusting their
physical locations [8]. One can also develop a malicious application
that shifts users’ virtual locations when they use the app [57].

3 INCEPTION ATTACKS
In the context of VR systems, we define an Inception Attack as:

2024-03-12 01:11. Page 2 of 1–15.

an attack where the attacker controls and manipulates the
user’s interaction with their VR environment, by trapping
the user inside a single, malicious VR application that mas-
querades as the full VR system.

An inception attack inserts the attacker between the user and any
external entities, by creating a simulation of the VR system’s home
environment and applications inside the malicious app and trapping
the user inside. While the user thinks they are interacting normally
with different VR applications, they are in fact interacting within
a simulated world, where everything they see and hear has been
intercepted, relayed, and possibly altered by the attacker.

When a user is under an inception attack, all of their input (voice,
motion, gestures, keystrokes) and VR app output (virtual browsers,
audio/video from remote servers, interactions with other VR users
via avatars) can all be eavesdropped, recorded, or modified in real-
time by an attacker. For example, in Scenario 1 (discussed in §1), an
attacker can compromise any user authentication scheme within
an inception attack, because everything seen by the user (prompts,
virtual keyboard, challenges and responses) can be captured by
the attacker. Similarly in Scenario 2 (§1), an attacker can intercept
and alter interactions between users, altering audio and visuals
(possibly augmented with generative AI tools) to create altercations
or spread false information.

At a high level, the inception attack is analogous to a “man-
in-the-middle” (MITM) attack on a network, applied to the VR
context. Like MITM attacks, inception attacks can be launched by
taking advantage of a variety of security vulnerabilities. In addition,
inception attacks can come in a variety of variants, depending
on the ultimate goal (e.g. eavesdropping or altering long-term VR
interactions). In the rest of this section, we discuss different threat
models and vulnerabilities that attackers can leverage to launch
inception attacks. We then describe different varieties of inception
attacks that can be launched under those threat models, including
attack variants that run locally on the headset and/or over the
network, and those that run in the background or as foreground
VR apps.

3.1 Threat Models and Points of Entry
Inception attacks can be launched from multiple points of entry.
Here, we consider two different threat models where the adversary
has decreasing levels of privileges in the target VR system. For each
threat model, we describe how an attacker can potentially achieve
this access level.

Threat Model 1. The adversary has the highest privileges (i.e.,
root access) to the target VR system. An attacker can obtain root ac-
cess using a variety of traditional attack vectors, including physical
access/hacking, privilege escalation, remote attacks, or traditional
jailbreaking methods. Root access allows the attacker to control
what the user sees or hears by directly tapping into the device’s
display and audio channels. But an easier alternative is to install a
malicious app with a hidden inception layer inside and run it when
turning on the headset. The user in their VR home screen might
notice a flicker before they are moved into the inception layer.

We note that the current generation VR systems lack many of
the security protection mechanisms available in operating systems

for desktop or mobile computing systems. More specifically, VR
systems have no secure bootloader or user authentication to prevent
an adversary from gaining control of the system. For example, open-
source VR system drivers [38, 43] are available for existing VR
devices such as Oculus Rift [68] and HTC Vive [67].

Threat Model 2. The adversary has no root access but is able
to run a malicious app that includes the inception attack hidden
inside (i.e., “an inception app”). This can happen in two ways.

First, many VR systems (e.g., Meta Quest 2/3/Pro, VIVE Focus 3
and PICO 4) support sideloading of VR apps for enhanced usabil-
ity [44, 51, 61]. Sideloading allows VR headsets to install and run
apps not from the official AppStore [69, 73], which can be initiated
from a remote server connected to a VR headset that has sideload-
ing enabled. This functionality is available on existing VR systems
including Meta Quest 2, 3 and Pro [32]. Thus, a remote attacker can
install an inception app on a target headset that mimics a legitimate
app.

Second, for headsets that do not support sideloading of apps, the
adversary can embed their inception component into an otherwise
benign app, e.g. a weather app, and publish it to the AppStore. For VR
systems with strong security enforcement like the newly released
Apple Vision Pro [3], disabling sideloading does not prevent the
target user from installing and running seemingly benign inception
apps. In this case, any user who downloads the app from the App
Store can become a target of the inception attacks when the hidden
functionality is triggered.

As described above, an inception attack just needs to run an app
with a hidden inception layer on the target’s headset, and that can
be done by exploiting a number of diverse security vulnerabilities.
This emphasizes the difficulty of preventing these attacks entirely,
and suggests that a multi-faceted defense strategy is necessary, i.e.,
one that combines hardening of multiple attack surfaces and active
detection of ongoing inception attacks. We discuss a range of these
defensive approaches and their implications in §7.

3.2 Attack Variants
While the inception attack is defined by its ability to hijack a user’s
immersive VR experience, it can actually be implemented in two
very different designs.

Local Background Mode with Root Access. Using a more
powerful threat model (e.g. Threat Model 1) where the attacker has
root access on the target headset, an inception attack has near total
control over the user experience. A root-level attacker can run the
attack process (along with necessary computation and storage) as a
local background process on the headset, and directly tap into the
headset display and audio channels to alter what the user sees and
hears. More importantly, changes to the user experience would be
transparent and implemented in real-time in a near-seamless way.

ForegroundMode. In an alternativeweaker threatmodel (Threat
Models 2), the attacker has limited control over the headset, but is
able to either run the inception app without alerting the user or
trick the user into running the inception app themselves. This is
the most practical and realistic threat model, and is the primary
threat model we assume in the rest of this paper. With few if any

2024-03-12 01:11. Page 3 of 1–15.

exceptions, a stronger threat model (e.g. root access) can perform
any attack or technique described in this weaker threat model.

This scenario has several implications on the rest of the attack.
First, lack of root access means that the inception attack will likely
be limited to running as a single foreground app process. Computa-
tion, storage and access to device components on the local headset
will be limited.

To address this challenge, the local inception app can leverage
assistance from an external server, where any additional compu-
tation (e.g. alternation/generation of human voices or text) and
storage will reside. Furthermore, the attack server runs a copy of
the legitimate VR app “on behalf of” the target user to interact
with their VR counterparts, by either connecting (via USB) to a
separate VR headset or running a headset emulator. As such, the
attack server acts as a MITM and relays data (with any desired
alternation) between the user and their VR counterparts.

In this approach, the attack performance is restricted by the net-
work performance. For instance, our existing network bandwidth
is sufficient to transfer conversation audios but insufficient to sup-
port transmission of visual inputs in frames. While 90 fps is the
most commonly used screen display setting on a VR system [66], in
our experiments, we observe an average fps=32 when transferring
frames (screen recordings of another Quest Pro headset) to a Meta
Quest Pro headset through a 5GHz WiFi network.

4 IMPLEMENTION ON META VR HEADSETS
We present an implementation of the inception attacks on today’s
Meta Quest headsets. Our implementation is applicable to all three
versions of the Meta Quest headsets, i.e., Quest 2, 3 and Pro. Later
in §6 we describe a user study where we execute the attack in
real-time during study sessions and evaluate its effectiveness in
deceiving users.

4.1 Attack Overview
This attack implementation follows the Threat Model 2 discussed
in §3.1 and runs in the foreground mode. In this implementation,
a remote attacker is able to inject and activate the inception app
without alerting the user. Specifically, the target user has a clean
headset free of any malicious elements. The target puts on the
headset, which by default connects the WiFi network to allow usual
functionalities, e.g. system updates and connections with peripheral
devices. A remote attacker obtains the network connection with the
target’s headset, quietly injects the inception app and a spy script,
and leaves the network. The spy script automatically activates the
inception attack on the headset at an opportune moment, thereby
taking complete control over the target’s interactions with the VR
system.

The attack implementation includes four components:

• Bootstrapping – Through a brief network connectivity, the at-
tacker connects with the target’s headset to run a set of shell scripts
via Android Debug Bridge (ADB). These scripts run silently in the
background and collect configuration information of the headset,
such as configuration files of the home environment and the list of
applications on the headset. We discuss the details on establishing
the connection with the headset and executing the scripts in §4.3.

Figure 2: An example home environment with 3D back-
ground on a Meta Quest Pro headset. Credit: A screenshot
taken inside the Pro headset.

• Simulating home environment – Using information collected
during bootstrapping, the attacker builds a precise replica of the
target’s home environment. To avoid suspicion, this replica mim-
ics not only the 3D background and the exact menu (see Figure 2
for an illustrative example), but also the immersive interactions.
Furthermore, the replica should support both official environ-
ments published by the VR platform (i.e., Meta) and custom-made
ones [64]. We discuss efficient methods for replication in §4.4.

• Simulating individual apps – Since users can only access appli-
cations via the home environment, our inception attack can take
full control of interactions between the user and individual ap-
plications by building application replicas and placing them onto
the simulated home environment. The exact replication methods
depend on the application and attack goals. We discuss the key
methodology in §4.5 and present the detailed implementations for
two apps in §5.

• Activating inception – The attacker packs the simulated home
environment and apps as an “inception app” and injects it into
the target headset via networked ADB access. Also, a spy script,
injected together with the app, runs in the background to monitor
system events, and activates the inception attack when the user
signals the system to exit the current application, which should
return them to the home environment. Rather than executing
this request as expected, the spy script intercepts and destroys
the signal, terminates the application, and initiates the inception
app. This smoothly transitions the user into the simulated home
environment, thereby starting the inception process. The decision
to activate inception during the application exit moment is delib-
erate, as it presents a natural disruption in the user’s immersive
experience, thereby mitigating suspicion. We discuss the detailed
implementation in §4.6.

4.2 Preliminaries: Meta Quest VR
Before delving into implementation details, we first describe the
workflow and features of the Meta Quest VR system. Meta Quest
headsets run on a modified Android operation system. After putting
on the VR headset, the user will see the 3D home environment (e.g.
Figure 2) and a menu panel to select applications and configure
system settings. The user clicks on an app button to enter the app,

2024-03-12 01:11. Page 4 of 1–15.

and returns to the home environment after exiting the app, typically
by pressing the “home” button on the right controller.

A substantial number2 of Meta Quest users opt to enable devel-
oper mode to unlock functionalities such as sideloading a diverse
set of applications, adjusting headset resolution, or capturing screen
content. Under developer mode, Meta Quest handsets support the
use of Android Debug Bridge (ADB) to accomplish the aforemen-
tioned functionalities.

Android Debug Bridge (ADB). ADB is a versatile command-
line tool included in the Android Software Development Kit (SDK).
With ADB, individuals equipped with a computing machine (e.g.
PC) can connect with Android devices and perform a range of
tasks, including screen recording, data transfer, debugging, and
app installation (i.e., sideloading). Once a connection is established,
users/machines gain access to the on-device OS shell, enabling
them to execute command lines and backend scripts. These include
installing and running scripts, installing or updating apps, deleting
data, reading device settings, transmitting data, and more.

With ADB, there are two ways for a machine to communicate
with a VR headset: direct USB connection and wireless TCP connec-
tion. The direct access requires physical access to the headset. The
wireless access requires the machine to be on the same wireless
network as the Meta Quest headset. Beyond these two methods,
Meta Quest also supports ADB proxy over SSH, another useful tool
to enable remote access to Android devices (including Meta Quest
headsets) without the need to be on the same wireless network [11].

Next, we will discuss how our implementation leverages ADB
(and ADB proxy) to deploy inception attacks in practice.

4.3 Bootstrapping
As discussed in §4.1, during this phase the attacker aims to connect
to the target headset and run shell scripts in the background to
collect essential configuration data. This information is then used to
replicate the target’s home environment and installed applications
with high precision. Our attack implementation achieves this via
ADB.

Obtaining Remote ADB Access. Assuming that the target’s
headset is connected to a wireless network, a remote attacker has
two methods to obtain ADB access to the headset.
• TCP Connection – This method operates under the assumption
that the attacker has gained access to the same local wireless
network as the target’s headset. For example, this could occur
if the target is using a public WiFi network, or if the attacker is
within the same institute or company as the target. Using tools like
Nmap [41], the attacker scans the wireless network to find Meta
Quest headsets with open TCP ports and then requests access. By
default, the Meta Quest’s wireless ADB listens to TCP port 5555
and requires no credential-based authentication. Only a pop-up
window appears on the headset screen, asking for permission. The
pop-up states “Allow USB debugging?” and displays the request
device’s RSA fingerprint, which lacks relevance to identifying
the device type and owner [48]. Consequently, the user is unable
to tell the source of the access request, instead perceiving it as

2For example, SideQuest is a platform for sideloading apps on Meta Quest headsets. It
has 2.2 million active users monthly [51]. By default, these users enable the developer
mode to allow sideloading.

one of the headset’s peripheral devices and granting the access.
Furthermore, since this access request is designed to be accepted
by default, it is easy for users to simply confirm the acceptance
without considering the implications.

• SSH Connection – This method assumes the attacker does not
have access to the local wireless network of the headset. Instead,
the attacker aims to gain remote ADB access via ADB proxy. To
do so, the attacker first needs to trick the target into installing
a “helper” app on the target’s PC that connects to the target’s
headset. For instance, this could occur if the attacker publishes
a free app and advertises it as a file-transporting app between a
headset and a PC. Yet the real purpose of the app is to establish
a remote connection between the target’s PC and the attacker’s
PC, which is now indirectly connected to the headset. This remote
connection (i.e., not in the same local network) can be established
via ADB proxy with SSH [11]. Furthermore, these actions occur
without any notification to the user, including the absence of a
pop-up window seeking permission.

• Additional Social Engineering – With brief physical access to
the target’s headset, the attacker can further streamline the first
method of remote ADB access. For instance, when an attacker’s
accomplice briefly wears the target’s VR headset, the attacker can
remotely request ADB access while the accomplice selects “always
allow from this computer” in the pop-up window. This grants the
attacker’s machine permanent remote ADB access to the headset,
preventing the pop-up window from appearing again.

Collecting Headset Configurations. After obtaining the re-
mote ADB access, the attacker has command-line access to the
headset’s OS shell and can now command the headset without
the target’s awareness. In particular, the attacker runs a sequence
of commands to obtain two configuration information from the
headset: (1) the specific 3D background used by the target’s home
environment, and (2) the list of installed apps on the headset.

Since all the available 3D backgrounds are stored as APK files
on the headset, the attacker just needs to identify the exact APK
file used by the current home environment. This can be done by:

adb logcat

which returns a log of system activities including the name of
background APK currently in operation. Given the APK name, the
attacker can then locate the file on the headset and transfer it to
the attacker’s machine:

adb shell pm path APK_name
adb pull path_to_APK

The typical size of these APK files varies between 20 and 100MB.
Using a standard WiFi connection of 10Mbps, it takes 2-10 seconds
to pull an APK file.

Alternatively, amore intelligent attacker first determineswhether
the APK in use comes from a public source, and if so, avoids the file
transfer completely by downloading it from somewhere else. For in-
stance, the attacker can determine whether the current background
is one of those issued by Meta,

adb logcat | grep "com.oculus.environment.prod"

or downloaded from popular online services like [52],
adb logcat | grep "com.environment"

2024-03-12 01:11. Page 5 of 1–15.

Finally, to find a list of the apps, the attacker uses the following:
adb shell cmd package list packages

which returns a list of installed apps on the headset. Knowing the
app names, the attacker can locate their button images, from either
local app APK files on the headset or online sources like Meta App
Store. Also, the attacker can easily access the state information,
such as recently used applications, via the ADB command dumpsys.

4.4 Replicating the Home Environment
Given the configuration data collected during the bootstrapping
phase, the attacker builds a replica of the target’s home environ-
ment, packages it as an inception app, and injects it into the headset,
again using the remote ADB access. Here the challenge is how to
efficiently replicate all crucial, immersive aspects of the home envi-
ronment at a high precision.

In our implementation, we focus on replicating four key aspects
of the home environment: (1) a 3D background with a menu, (2)
displaying, calling, and exiting apps, (3) monitoring and reacting
to user inputs, and (4) configuring device settings, such as Internet
access. Next, we discuss detailed implementation for each.

Replicating Visual Content. Recall that during bootstrapping,
the attacker obtains the background APK file, the list of installed
apps and their button images, and recent history of app usage, as
well as other state information likeWiFi and Bluetooth connections.
The attacker can replicate the exact 3D background chosen by the
target, by unpacking the corresponding APK file. Similarly, the
attacker can replicate the application library window, where the
app buttons are placed in a grid-like layout (see Figure 3), and
add more state information such as history of applications and
WiFi/Bluetooth connections. Finally, since the configurations of the
cursor, pointer, and menu bar are fixed, they can be replicated with
high precision.

Replicating App Calling/Exiting. Upon detecting that the
user clicks an app button (discussed below), the inception app will
“transition” the user to the inception version of the selected app.
This transition is straightforward since the inception app includes
these inception versions (see discussion in §4.5).

Furthermore, when exiting an app (e.g. by pressing the “home”
button), the inception attack needs to “return” the user to the simu-
lated home environment instead of the actual home. This is done
by installing a spy script (together with the inception app) via ADB,
which runs in the background to monitor and intercept the exit
signal3. Upon detecting this signal, the spy script halts (or kills) sub-
sequent activities and transitions the user to the simulated home
environment. The same action is used to activate the inception
attack. We will list the detailed implementation in §4.6.

Monitoring and Reacting to User Inputs. Enabling users to
engage with virtual objects is vital for any VR experience. Meta has
addressed this need by releasing the Interaction SDK [45], allow-
ing developers to seamlessly integrate user interaction into their
VR experiences. These include recognizing and reacting to user
movements and inputs via controllers and/or hands. Leveraging

3The spy script can detect the “pressing home button” signal sent by the handheld
controller, and other exit signals (e.g. “pressing virtual exit button on the app”) that
change the system foreground activity.

Figure 3: The application library window in VR home. The
user is selecting an application called wolvic. Credit: This
screenshot is taken inside the Meta Quest Pro VR home.

the SDK, the attacker can easily replicate the interaction function
in the home environment.

Enabling System Configuration. Key configuration elements
include WiFi/internet access [14], Bluetooth peripheral device ac-
cess [35], and audio [31]. Access to all of these elements is crucial for
achieving full immersion, and therefore, is automatically granted to
all applications at runtime without requiring explicit user permis-
sion. The inception app can easily replicate the process and result
of user configuration.

Removing App Splash Screen. One notable distinction be-
tween an app and the native home environment is that apps typi-
cally feature a splash screen at launch (e.g. all apps created with
Unity include one by default), which is not the case for the home
environment. When packaging the inception app, the attacker can
easily eliminate the splash screen. They have two options: either
acquire a Unity Pro or Enterprise plan ($2000 per year), which offers
the removal feature, or utilize the free Unity Asset Bundle Extrac-
tor to adjust the application parameters [26]. We use the latter to
successfully remove the splash screen.

Injecting the Inception App. In our current implementation,
the final inception app has a file size of around 700MB. The transfer
(via WiFi) and installation over ADB take about 1 minute in our
experiments. And this process occurs discreetly, without the user’s
knowledge. Later in §6, we confirm this observation in our user
study – despite conducting the file transfer and app installation
within each participant’s session (while they are wearing the head-
set), they remained oblivious to these actions, exhibiting no signs
of suspicion.

4.5 Replicating Applications
After taking control of the home environment, the attacker can
choose to hijack the interaction between the target and any given
app. To do so, the attacker needs to “replicate” the app in order to
either eavesdrop on the target’s actions and/or modify the target’s
input into the app (e.g. text, speech, gesture) or the app’s output to
the target (e.g. screen content, audio). For each app, the attacker
has three replication options.

Option 1: Direct App Call (no inception). For applications
that the attacker does not wish to hijack/control, there is no need to
replicate the app. The attacker only needs to instruct the simulated
home environment to call the original applications (installed on the
headset) when the target chooses to open them. This functionality

2024-03-12 01:11. Page 6 of 1–15.

(i.e., an app sends the user to another app) is already supported by
Android as one of its most important features [15] with ready-to-use
plugins [4]. Thus the implementation is straightforward. Finally, as
discussed in §4.4, when exiting an app, our implementation ensures
that the user returns to the simulated home environment.

Option 2: Replicating App GUI. If the attacker only wants to
eavesdrop on the target’s credentials on an app, they only need
to replicate the login page of the app. After the target inputs their
credential, the inception ends the replica and loads the original app
to the foreground. Note that if the original app includes a splash
screen during loading, this will lead to an extra splash screen that
may raise suspicions. We can mitigate this by first displaying an
app crashing popup and then loading the original app. Given the
common occurrence of Meta Quest apps crashing during loading,
this approach helps prevent user suspicions.

Option 3: Full Replication via API Calls. This option aims to
realize the full hijacking attack where the user’s interactions with
their VR counterparts are eavesdropped, recorded, or modified in
real-time by an attacker. One may raise doubts about the feasibility
(or cost) of fully replicating a VR app, particularly since attackers
generally lack access to the source code. Instead, we demonstrate
that replication can be efficiently accomplished by focusing on
replicating the app GUI and API calls. This is because many VR
applications function by interfacing with servers via APIs, i.e., the
application constantly sends API requests to access the web server,
fetching data to present on the user’s headset. App developers
prefer this approach because it not only streamlines app develop-
ment, saving time and effort, but also significantly enhances app
functionality and compatibility across platforms [23].

In our attack, the app replication method depends on whether
the API is public or private. An API is considered public when it
is accessible to all users [1], and private if access is restricted to
authenticated parties such as app developers but not attackers.

• Public API – The replication includes three simple tasks. The at-
tacker first clones the app’s GUI and the standard user interaction,
similar to the process of replicating the home environment in §4.4.
Next, the replica calls the public APIs to communicate with the
legitimate app’s server to fetch data, using the target’s credential
obtained via the replicated GUI. After receiving the server data,
the replica app integrates them onto the GUI and displays the
content on the target’s headset.
Using the replica app, the attacker can now (1) eavesdrop on
communications between the target and the server; (2) change
the target’s input to the GUI, use the modified input to call the
API and thus the server; (3) change the server’s output data (e.g.
visual content, audio) and display the modified data on the target’s
headset. In this way, the attacker hijacks the entire app session.

• Private API – In this case the replication is more complicated due
to the lack of API access. Yet we show an efficient replication is fea-
sible when the attacker uses a separate VR headset and a computer,
which are connected via USB. Specifically, the app replica on the
target’s headset implements the app GUI and user interaction (like
the above), from which it obtains the target’s credentials for the
app, and forwards them to the attacker’s PC and thus the headset
using standard network connections. The attacker’s headset runs

the original app using the target’s credentials to interact with the
server. In this case, the attacker’s PC/headset combination acts
like a man-in-the-middle between the target’s headset/app and
the server, allowing the attacker to manipulate the interaction
between the two.

Later in §5, we describe the detailed replications of two apps based
on public and private APIs, respectively.

Finally, the attacker packs both the replicated home environ-
ment and replicated apps into a single “inception app”. The file size
depends on the specific configurations of the home environment
and apps being replicated. In our implementation, we find that the
replication of the home environment is the dominating factor.

4.6 Entering Inception
Now the inception app is installed on the target headset via (remote)
ADB access, the remaining task is to start the inception session. As
explained in §4.1, the optimal moment to stealthily transition the
user into the inception is upon exiting a 3D app, just before they
return to the home environment. In this case, the inception brings
them back to the simulated home environment without raising any
suspicion.

To do so, the attacker injects a spy script (together with the
inception app), which runs continuously in the background. The
script monitors the headset activity and user inputs using ADB
commands such as dumpsys and getevent. In particular, the script
can detect the signal of app exits using getevent, marked by an
action of pressing the “home” button on the right controller4. Upon
detecting such signal, the script proceeds to halt (or kill) subsequent
activities (detected via dumpsys) and activates the inception app.
We list the complete script below.

#!/system/bin/sh

getevent -l | awk '
/EV_KEY KEY_FORWARD UP/ {

system("am force-stop `dumpsys activity |
grep top-activity |
grep -o 'com.*/' |
tr -d '/'`")

system("am start -n inception_app")
}

5 SPECIFIC APP REPLICATIONS AND ATTACK
INSTANCES

In this section, we present two applications that we have replicated
in our attack implementation, and use them to demonstrate the fea-
sibility and impact of the inception attacks. The two applications are
Meta Quest Browser [33], which uses public APIs to communicate
with web servers, and VRChat [63], which uses private APIs.

5.1 Meta Quest Browser
Meta Quest Browser is the built-in browser for Meta Quest headsets,
offering users an immersive web browsing experience. With this
4Other types of exit signals (e.g. “pressing virtual exit button on the app”) can be
detected via monitoring changes in the system foreground activity using a spy script.

2024-03-12 01:11. Page 7 of 1–15.

Meta Quest Browser Our Browser Replica

Figure 4: A side by side comparison of the screenshots of the
Meta Quest Browser and our replica.

app, users can simultaneously navigate multiple websites through
multiple windows, enjoy streaming videos on a captivating theater-
sized screen, and engage with social media platforms seamlessly. It
also enables web developers to build attractive web content offering
immersive VR experiences.

We build a replica of the browser app in Unity [58]. Since the
app uses public APIs to communicate with web servers (e.g. HTTP
requests to access websites), our replication effort mainly focuses on
(1) replicating the browser GUI, (2) displaying the website content,
and (3) detecting and responding to user inputs.

For (1) we clone the browser GUI using Unity UI [59]. Specifically,
we use a Canvas object as our 2D browser window. The Canvas
object defines an area for displaying UI elements. Inside the defined
area, the attacker can arrange and display texts, images, buttons,
toggles, webpages and more. Unity UI also handles registering
user interactions. For instance, each button element has OnClick
function which allows the attacker to define the effect of clicking
this button.

For (2) we leverage the Android WebView library [13, 65]. In
particular, the function loadUrl(the_URL) fetches the content of
a website with address the_URL. We then display this content at
the corresponding location on the above Canvas object.

For (3), we use the Meta Interaction SDK [45], an API for apps
to access user inputs at runtime. Using this SDK, we configure the
replica app to monitor and log user’s clicks, drags, and keystrokes
on each webpage and their exact locations, and respond to these
actions by updating the GUI content and/or sending API calls to
web servers to fetch desired contents.

Figure 4 plots a side-by-side comparison of the screenshots of
the Meta Quest Browser and our replica. We see that the replica
closely resembles the real version. As a reference for the attack cost,
we build the replica in less than a day.

Inception Attack Scenarios. Using this browser replica, we
demonstrate three attack instances, where the attacker is able to
eavesdrop on user login credentials, modify user input to websites,
and modify website content displayed on the headset, respectively,
all in real time. We use these examples to demonstrate the practi-
cality and simplicity of the attack.

(1) Eavesdropping on Target’s Credentials – When the tar-
get uses Meta Quest Browser to access sensitive accounts such as
banking, corporate, medical, and emails, the attacker can intercept
and log private information, including credentials entered by the
target. This is because, using the interaction SDK, the replica app
can accurately monitor cursor movements, record keystrokes, cap-
ture button presses, and track headset motions. It also has complete

Figure 5: In a banking scenario, the bank server sends the
correct banking account balance to the target in VR. However,
this balance is altered by an inception attack to $10 before it
gets displayed to the target.

knowledge of the website’s content. Consequently, the attacker can
accurately extract user inputs to specific web entries.

(2) Manipulating Server Output (e.g. bank balance) – The
replica app can display a modified version of the website content
fetched from the server. Consider a typical example of online bank-
ing sessions. When the target uses the replica browser to access
a bank website, the browser first collects their credentials from
the replicated GUI and sends the credentials to the bank server
via HTTP requests. After verifying the login credentials, the bank
server returns the target’s account information to the headset, in-
cluding the account balances. While all of these network commu-
nications are encrypted using SSL handshakes, the content to be
displayed on the headset is encrypted using a key provided by the
replica browser during the handshake. Thus the replica browser
can decrypt and obtain the raw contents, and can modify them
before displaying them on the target’s headset.

Figure 5 shows a screenshot of the target’s headset display, where
we altered their Bank of America account balance to $10. The data
alteration is done by executing the following JS code in the replica
browser via [65]:

document.getElementsByClassName(
'balanceValue TL_NPI_L1'

)[0].innerHTML = '$10';

Here we note that the attacker has complete control over the replica
browser, allowing them to execute any arbitrary code at will.

(3) Manipulating Target’s Input (e.g. transaction amount)
Similarly, the attacker can also modify the content of user inputs on
the replica, and use the modified content to form API calls to web
servers. These API calls typically utilize plain text and numerical
values within the parameter fields (e.g. HTML format).

Here is an example. Figure 6 demonstrates a scenario where the
victim is doing an online transaction via Zelle [71], a digital payment
service owned by Bank of America. The victim first initializes a
$1 transaction by filling out the web form and clicking “Continue
transfer” (see Figure 6a). Before the web form is submitted to the
server via an HTTP request, the attacker altered the transaction
amount to $5 in the web form by the following JS code:

document.getElementById('btnModalSave')
.addEventListener('mouseover', () => {

2024-03-12 01:11. Page 8 of 1–15.

a b c

Figure 6: In a transaction scenario, the victim’s amount input is altered by an attacker before submitting to the bank server.
(a) The victim initializes a $1 transaction by filling out the web form. The attacker secretly alters the transaction amount to
$5 in the form before sending it to the server. (b) The victim is then taken to a confirmation page to finish the transaction.
The attacker sets the amount value to $1.00 on the confirmation page to avoid any suspicion from the victim. (c) The actual
transaction amount is altered to $5.

document.getElementById('txtAmount').value = '5';
});

After submitting the form, the victim is taken to a confirmation
page (see Figure 6b) where they need to finish the transaction
by clicking “Make transfer”. To prevent the victim from noticing
a modified transaction amount has been submitted, the attacker
alters the amount value displayed on the confirmation page via the
JS code below:

document.getElementById('transfer-amount')
.innerHTML = '$1.00';

As shown in Figure 6c, the actual transaction made is $5 according
to the final record page. Note that this page can also be modified by
the attacker in a practical attack.We leave it this way to demonstrate
the success of the attack.

5.2 VRChat
Previously in §1, we described an inception scenario where Alice
and Madison’s conversations during VR date nights are hijacked by
an attacker Carl. Next, we describe an implementation of this attack
on Meta Quest devices by replicating the VRChat app [63], where
the attacker can listen to and modify live audio communications
between Alice and Madison. An illustration is shown in Figure 7.

VRChat is the leading online social platform for VR users, en-
abling them to engagewith each other through personalized avatars.
According to [12], VRChat consistently maintains an active player
base of 20 million every month throughout 2023. Within VRChat’s
immersive virtual environments, participants engage in conversa-
tion, gaming, and romantic encounters like date nights [18]. To
safeguard player privacy, VRChat employs a private API for seam-
less communication between players and servers.

We replicate VRChat with the help of a laptop (Macbook Pro
2019) and an additional Meta Quest headset connected to the laptop
via USB (as discussed in §4.5), both under the attacker’s control.
We hereby refer to the combo as the attacker server, which acts as
a man-in-the-middle between the target and the VRChat server.

Specifically, the replica app on the target’s headset implements
the GUI of VRChat, from which it captures the target’s credentials

(for their VRChat account). Furthermore, the replica app captures
the target’s live speech and motion, and streams these data to the
attacker server. The attacker’s server runs a legitimate VRChat app
on its headset using the target’s credentials, which communicates
with the VRChat server. The attacker server also captures its VR
headset’s screen display and audio stream, and livestreams them to
the replica app on the target’s headset, which then displays both
on the headset. In this way, the attacker server is a man-in-the-
middle between the target’s headset and the VRChat server. More
importantly, it has access to the raw visual and audio data and can
modify either of them in real time to hijack the VRChat session.

The key tasks in this implementation include (1) cloning the
app GUI and user interaction, (2) live streaming data between the
target’s headset and the attacker server, and (3) modifying the visual
and/or audio data in real-time. For (1), we follow the same process
discussed earlier to build the GUI in Unity. For (2) we set up a
streaming server on the laptop in Unity, using the FMETP STREAM
library [37] designed for live streaming between devices. We also
configure the replica app on the target’s headset to communicate
with the attacker server using WebSocket via the STREAM library.

For (3), the task of modifying visual or audio data in real time
is more challenging. We illustrate an immediate solution for audio
editing. Let Alice be the target. In the target-to-server direction, Al-
ice’s headset records her speech and live streams it to the attacker’s
laptop. The laptop plays the received speech (or the modified ver-
sion) next to the attacker’s VR headset, which runs the legitimate
VRChat app. As such, Alice is “speaking” to the legitimate VRChat
app, with some delay. In the server-to-target direction, the VRChat
server sends Madison’s speech to the attacker’s VRChat app. The
attacker’s laptop records this speech via USB connection to the
attacker’s headset and live streams it (or the modified version) to
the target’s headset, so that Alice hears Madison’s speech. In both
directions, the attacker’s laptop processes both Alice and Madison’s
speech and can replace them with some pre-recorded ones, e.g.
replacing “yes” with “no”. We also note that the attacker’s laptop
can also employ real-time speech recognition and synthesis tools
to produce high-quality speech of any content.

2024-03-12 01:11. Page 9 of 1–15.

� �

VRChat
Server Carl

MadisonAlice

Hang out
this Friday? Yes!Send

Audio

Receive
Audio: Yes! � �

VRChat
Server

MadisonAlice

Hang out
this Friday?

Send
Audio

Receive
Audio: No!

No!

😈

Benign Interactions Under Inception Attack

I never want
to see

you again!

Why😭
Receive Audio:

Break up
message.

Figure 7: Under the inception attack, the attacker Carl acts as a man-in-the-middle between Alice and Madison’s VRChat
session. Consequently, Carl is able to alter the real-time audio transmission. For example, Alice will hear Madison answering
“No” to her question while Madison is actually asking “why” in reply to the fake break up message sent by the attacker.

Figure 7 plots the comparison between a benign VRChat session
between Alice and Madison, and a version when Alice is under the
inception attack. Here the attacker Carl is able to modify Madison’s
answer to Alice’s question in real time, using a pre-recorded speech
of Madison (e.g. those recorded from prior sessions).

For this proof-of-concept implementation, we also measure the
additional delay introduced by the inception attack. The primary
factor is the communication between the attack server (Carl) and
Alice’s headset across the network, marked by the red line in Fig-
ure 7. Comparing to this delay, the delay between the attack server
and Carl’s headset, connected via USB, is minimal, as is the pro-
cessing delay on the attack server. In the setup where the attack
server is connected to Alice’s headset via a 5GHz WiFi network,
the extra delay is between 0.4 and 0.6 seconds for both directions.

5.3 Discussion
The attack instances (§5.1-5.2) clearly highlight the practicality,
simplicity of execution, and the extent of damage caused by the
inception attack. With nearly full control over the application pro-
cess in real time, the inception attacker possesses the capability to
execute diverse, arbitrary malicious actions, enabling tracking of
user behaviors and manipulation of their sensory input/output and
immersive experiences. As a result, the potential attack vectors are
virtually limitless.

On-Device vs. Over-Network Control. Our examples also
show that, depending on the application being targeted, the incep-
tion attack can be controlled by a process on the target’s headset
(§5.1) or remotely over the network by a server (§5.2).

The on-device option is constrained by the computational capa-
bilities of the VR headset, which remain notably inferior compared
to computers/servers. As such, today’s Meta Quest headsets are
unable to run any generative AI tools.

The over-network option is largely limited by network band-
width, particularly when the attack involves transmitting visual
content between the target’s device and the attack server for recog-
nition and modification. This is because, to offer immersiveness,
VR headsets demand much higher resolutions and frame rates than
current computer or tablet screens. For example, requiring a mini-
mum frame rate of 90 frames per second (fps) is crucial to mitigate
motion sickness, a significant increase over the 60fps typically used
for computer screens.

6 EVALUATION: USER STUDY
We perform a user study to evaluate the efficacy of our incep-
tion attacks in deceiving users. Our focus is to determine whether
users can detect differences, if any, between the real VR environ-
ments/apps and the simulated ones created by our inception attacks,
thereby prompting suspicion and vigilance when they interact with
the simulated environments. Our user study was evaluated and
approved by our local IRB board.

6.1 Study Setup

Design. To evaluate the efficacy of our inception attacks in a
typical everyday setting, we withhold information about the attacks
from the participants at the beginning of the study. We inform the
participants that the study aims to investigate their experiences
when interacting with VR applications. After they explore various
VR applications, we debrief the participants with a detailed explana-
tion of the true objectives and conduct the interview. No personal
data of the participants is retained post-study.

Participants. We recruited 27 participants from our institution
(P1-27), including 5 females, 21 males, and 1 participant who chose
not to disclose. The participants range in age from 20 to 30 years
old and have varying degrees of familiarity and experience with
VR devices. Among them, 3 participants are experts who use VR
devices on a daily basis (P1-3); 6 participants are professional users,
regularly using VR devices on a weekly basis (P4-9); 10 partici-
pants are knowledgeable users who have had several experiences
using VR devices (P10-19); and 8 “entry-level” participants have no
prior experience (P20-27). Our study lasts roughly 30 minutes. Each
participant is compensated with $20.

Procedure. The study is held inside a large room, and involves
one participant at a time. We provide each participant with a Meta
Quest Pro headset to immerse themselves in their VR journey. Upon
putting on the headset, they find themselves in a legitimate VR home
environment that is custom-made. By opting for a custom-made
home environment rather than Meta’s default home environment,
we evaluate our inception design using a more challenging scenario
where the attacker lacks any prior knowledge of the target’s home
environment. Within the VR home, we guide participants through
operations of headset controls and interactions, allowing them to
navigate freely until they feel comfortable with the system.

2024-03-12 01:11. Page 10 of 1–15.

Next, we invite the participant to explore VR applications and
rate their experiences. This task is divided into two parts. In Part I,
we ask the participant to access the application library from the VR
home and choose an application they wish to explore. The library
offers a diverse array of 14 applications, covering office, social
networking, gaming, entertainment, and web browsing. Examples
include Horizon Workrooms, Horizon Worlds, Beat Saber, YouTube
VR and Meta Quest Browser. After approximately 5 minutes, we
ask the participant to exit the application, which brings them back
to the VR home. Here the participant has the option to explore
one more app, or go directly to open the Meta Quest Browser app
and rate their experiences by completing a Google form. Here the
Google form has a question asking for the participant’s institutional
ID number5. After submitting the form, the participant exits the
app and returns to the VR home.

In Part II, we ask the participant to repeat the Part I process by
exploring two additional applications before accessing the Meta
Quest Browser app to respond to the Google form. What the par-
ticipant does not know is that, upon exiting the app at the end of
Part I, an adversary initiates the inception attack on their headset.
Consequently, instead of returning to the authentic VR home, the
participant enters the simulated VR home generated by the incep-
tion attack as Part II begins. Similarly, the Meta Quest Browser app
used in Part II is a malicious replica crafted by the adversary (see
§5.1), enabling them to record the participant’s responses to the
Google form, including their institutional ID number.

Debriefing Interview. After the above VR session, a member
of our research team conducts a debriefing with the participant,
disclosing details about the inception attack and its occurrence
within the session. Next, the researcher interviews the participant,
posing the following two questions:
(Q1)Did you observe any suspicious or unusual occurrences during
the inception attack?
(Q2) Did you experience any hesitation when disclosing your per-
sonal information to the Browser app in Part II?

6.2 Results
We start from summarizing the key observations after analyzing
participant responses before and after the debriefing.

• Prior to our debriefing, only one out of the 27 participants, who is
a VR expert, voiced some suspicion during the inception attack
phase. And all 27 participants proceeded without hesitation when
prompted to enter their institutional ID in the Google form.

• After disclosing the true intent of the study, 10 out of the 27 par-
ticipants recalled experiencing something unusual or “off” during
the inception phase. These 10 participants include 2 experts, 3
professional, 4 knowledgeable, and 1 entry-level VR user. Interest-
ingly, 9 out of these 10 participants attributed the discrepancies
they observed to system glitches, which did not concern them at
all. Only one expert (P3) stated that “I would likely investigate the
matter if it weren’t for the user study.” Finally, for the remaining
17 participants, the inception attack came as a complete surprise
since they did not notice any difference between Part I and II.

5The ID is immediately discarded after the current study.

Exiting Application
Beat Saber Meta Horizons Bigscreen Rec Room

No attack 8.10 ± 0.68 7.55 ± 0.74 8.30 ± 0.64 8.10 ± 0.68
Inception 9.41 ± 0.64 8.98 ± 0.73 9.62 ± 0.68 9.69 ± 0.72

Table 1: Measured loading time (seconds) of VR home envi-
ronment, in terms of mean and std, for both no attack and
inception attack scenarios. This small difference only occurs
during the initial activation of the inception attack. After
that, there is no notable difference between the two.

Next, we present a more detailed analysis of participant responses.
We begin with the types of discrepancies they recalled, and then
delve into the underlying reasons for the absence of suspicion (Q1)
and hesitation (Q2).

Observed Discrepancies. Ten of our participants recalled four
types of unusual or “off” details.
• P2, P9, P10, and P26 recalled that a system pop-up was missing
during the inception phase. In the normal phase, when pressing
the “home” button on the handheld to exit an app, a pop-up will
appear and ask the user to confirm the action of exiting the app.

• P3, P7, and P13 recalled that the status of recent applications is
not displayed in the VR home during the inception phase6. In
particular, P3 stated that “[The fact that] it didn’t memorize the
previous states that I have [really bothers me].”

• P9 and P14 reported that the controllers are a bit different. P14
noted that “I think the [cursor] beam [of the controllers] is shorter
[compared to the legitimate one].”

• P5, P9, and P12 noticed that the loading time of the “VR home”
during inception is slightly longer.

We believe that the first three types of discrepancies can be effec-
tively addressed by deploying enhanced attack implementations,
where the attacker diligently replicates all crucial aspects of the VR
environments with greater precision. For instance, the system pop-
up is essentially a 2D app, which the attacker can easily replicate,
and the attacker can easily access the state information (i.e., recent
applications) via an ADB command: dumpsys during bootstrapping.

The loading time discrepancy is caused by the difference in
how VR loads the home environment versus initializing an applica-
tion. Initiating a 3D application requires decompressing assets and
loading the 3D scene, which may take extra time. To gain deeper
insights, we measure loading times in both normal and inception
scenarios, as the duration from the user’s initiation of exiting an
application to the appearance of the home environment. Here we
vary the application being closed and perform 10 trials per applica-
tion, while ensuring a consistent 100% battery charge throughout.
Table 1 reports the mean and standard deviation of the loading
time (in seconds), which vary across trials and applications. The
inception attack results in an average increase of only 1.5 seconds.
Considering the inherent variability in VR performance over time,
such deviations may not trigger suspicion among users. This obser-
vation is further supported by the feedback we gathered from user
responses (discussed next).

6Indeed, the simulated VR home used to conduct this user study did not display the
status of recent applications because, at the time, we did not perceive it as necessary
or significant.

2024-03-12 01:11. Page 11 of 1–15.

We note that this time discrepancy only occurs when activat-
ing the inception attack, because loading the inception app takes
longer than loading the original home environment. After that, the
perceived VR home loading time is nearly identical to the no attack
scenario (since the app assets and scenes are already loaded).

Reasons forNo Suspicion. We study the reasons behind the lack
of suspicion raised by our participants during the inception attack
phase. In particular, for all 10 participants who noticed unusual
patterns, including 2 experts and 3 professionals, none voiced any
suspicion except one expert VR user (P3). Our analysis yielded
two primary explanations for both highly experienced and less
experienced VR users.

• Accustomed to fluctuating VR operations and glitches. Four
participants (P1, P2, P4, and P5) who are highly experienced VR
users stated that they are accustomed to fluctuations and glitches
in VR operations, and tend to perceive any unusual patterns as
standard system variations or glitches. Thus upon noticing un-
usual behaviors, they raised no suspicions. Additionally, P1 elabo-
rated that the frequent updates to VR systems contribute to the
difficulty in recognizing (ab)normal operations – “Even if I notice
some differences [in the inception], I wouldn’t think they are fake. I
will be like [the company] probably did some [system] updates.”

• Harmless discrepancies. Less experienced users may not have
a comprehensive grasp of what defines a legitimate VR system,
but this does not prevent them from perceiving differences be-
tween the inception phase and the normal phase. Interestingly,
they do not think that these observed variations as alarming or
suspicious in any way. For example, P13 noticed that the status of
recent applications is missing but stated that “I don’t think it was
suspicious or anything.” P14 recalled that the controller cursor is a
bit different, but raised no suspicion because “the interaction still
works like when I want to click something, it still works.”

Reasons for Disclosing Personal Information. All partici-
pants confirmed that the malicious copies of the Meta web browser
app and the Google form page closely resembled the authentic ones
utilized in Part 1. Also, the expert user (P3)’s concern stemmed from
observations made while navigating the replicated VR home envi-
ronment. Next, we inquire about the rationale behind participants’
decision to disclose personal information (i.e., their institutional ID
number), which yields two noteworthy reasons.

• Trusting enterprise app. Many have developed trust in rep-
utable enterprises and believe that the products offered by these
companies are safe to use. In our study, some participants ex-
pressed confidence in the safety of using Google Forms on the
Meta Quest Browser, considering that both products are supplied
by well-established enterprises. For example, “I mean the browser
seems legitimate. It was again the Meta browser and [...] in the par-
ticular Google form so it did not seem like it was an attempt to get
my data.” (P24).

• Repetitive behaviors. People tend to autopilot with momentums
and habits when it comes to repetitive activities. For instance, we
usually key-in the password to unlock our smartphones without
hesitation. In our study, each participant responded to a Google
form twice, first on a legitimate browser and then on a malicious

replica. Several participants mentioned that they thought the sec-
ond time was the same as before so they just repeated what they
did without hesitation. “I feel like I was going through the same
route as before [...] so I do not assume [...] that would steal my
identity.” (P14).

Key Takeaways. The results of our study demonstrate the initial
feasibility and effectiveness of our inception attacks, which suc-
cessfully deceived 26 out of 27 participants. Notably, even highly
experienced users, who interact with VR devices on a daily/weekly
basis, were susceptible. Our study also reveals that it is challeng-
ing for individuals to resist inception attacks. First, the inherent
volatility and glitches within today’s VR systems make it highly
challenging to detect minor discrepancies or raise suspicions. Fur-
thermore, the trust placed in applications developed by reputable
enterprises and the habits formed through prior use of legitimate
applications also encourage users to maintain their usual operations
during the inception attacks. We need more systematic approaches
to defend against such attacks.

7 POTENTIAL DEFENSES
We discuss potential defenses against the inception attack and
their efficacy and cost tradeoffs. Similar to traditional MITM net-
working attacks, we also classify our consideration of potential
defenses based on way of implementation and location of solu-
tion [6, 10]. We list defenses via prevention (§7.1), attack detection
(§7.2), and hardware-based mitigation (§7.3). Ultimately, a combina-
tion of these defensive strategies would provide the best coverage of
attack surfaces (force an attacker to bypass multiple mechanisms),
and give the most robust results (§7.4).

7.1 Defenses via Prevention

Preventing installation. First, we consider defenses that pre-
vent the inception app from being installed on the target headset.
• Adding secure authentication to networking ports. Requir-
ing stronger authentication on networking ports would limit the
installation of inception attacks through unauthorized remote con-
nections. However, inception app installation is still feasible via
two other methods: (temporary) physical access to the headset
and AppStore download.

• Disabling sideloading on headsets. Inception is conveniently
executed through sideloading; without it, the attacker would need
alternative ways to inject the inception app, e.g. packaging and
publishing it on AppStore inside a benign app. With an Android-
based OS, Meta Quest supports sideloading via ADB, which is
an essential feature for individuals and enterprises, supporting
device configuration, screen recording, app development, testing,
access to apps not on AppStore, and business workflows (see §4.2).
Considering these use cases and the extensive user base [51], fully
disabling sideloading could be very challenging.
To improve security, VR systems may mandate informative tuto-
rials on the security risks associated with sideloading, or reduce
the need for enabling sideloading and ADB access by migrating
important use cases to more controlled environments. While these
approaches are realistic, their protection against inception attacks
relies completely on user choices, making them less reliable. In

2024-03-12 01:11. Page 12 of 1–15.

contrast, Apple’s visionOS currently does not support sideload-
ing, but attackers might exploit device-to-device communication
features such as the Apple Wireless Direct Link (AWDL) [55].

• Safe bootloader and secure enclave. A secure enclave is a
processor isolated from the main application processor, storing
cryptographic keys and keeping them inaccessible from the rest
of the system. During startup, the secure enclave verifies the boot-
loader, operating system kernel, and privileged processes, thereby
protecting the integrity of the entire boot process. Approaches like
these would prevent the Inception app from installing as part of
the OS or running on the headset. Safe bootloader is quite power-
ful, since it disables the attack even if the adversary gains physical
access to the headset and tries to launch the inception directly.
Unfortunately, the capacity of secure enclave is limited, often used
to store keys and biometric data, and is far from scaling to the
entire OS [21, 22, 49]. The limitation of this approach is in the
complexity and high cost of its implementation [2, 30].

Preventing inception launch. If the inception app is success-
fully installed on the headset, some defensive techniques could help
prevent it from executing on the headset.
• Kiosk mode. In the enterprise setting, the use of kiosk mode
can restrict the set of apps that the user can interact with, which
would prevent the inception app from launching. But kiosk mode
significantly limits the flexibility of enterprise SaaS and increases
operational costs. We also note two additional caveats: 1) some
enterprises allow employees to use personal headsets for work, and
the defense cannot be implemented in this case; 2) the machine
that manages the kiosk mode is not immune to the attack: if
compromised, the entire system would fall under control by the
attacker.

• App certificates. To the VR system, the inception attack app is
just like any other custom VR app, without requiring extra verifi-
cation. Therefore, the validation process needs to be enhanced for
all apps. If app certificates are enforced, the attacker would need
to bypass the validation to run inception, by getting a certificate or
exploiting flaws. For example, Android apps try to increase custom
certificate validation logic security and block insecure applications,
but research suggests that the system is still vulnerable [42].

Prevent inception attacks from calling other apps. If the
attacker already has the inception app running on the headset,
defenses may increase the cost of the inception attack by preventing
it from replicating individual apps by calling them directly on the
local headset.
• Disabling app calls by non-system apps. Disabling app transi-
tions would prevent the inception app from opening other apps
or their sub-pages. This means the inception attack cannot clone
individual apps via direct app call, i.e., option 1 or 2 discussed in
§4.5. Yet the attack can always take option 3 in §4.5 to replicate an
app, which results in a higher cost. On the other hand, disabling
these app calls presents significant practical drawbacks – mobile
development ecosystems, including VR, support application calls
by other apps because it is crucial for apps to initiate other apps
and fork processes, especially for multi-scene apps. Disabling this
feature increases development costs and reduces the usability of
many legitimate apps, thus making it an undesirable choice.

• Validating authenticity of app calls. Strong client authentica-
tion is one of the standardways to preventMITM attacks. Headsets
can add similar validations to authenticate app communications.
Nevertheless, certificate validation and source authentication are
still not immune to MITM attacks [19, 50] and will not completely
defend against the inception attack. Yet it would increase the attack
cost, by eliminating the app replication option 1 and 2.

• Uni-processing for 3DVRapps.Due to performance limitations,
Meta Quest only supports a single 3D environment at a time and
stops the previous 3D app when launching a new one. If the
inception app chooses to directly call a 3D app (i.e., using app
replication option 1 or 2 in §4.5), the inception app itself will stop.
However, this has little impact on the attack since the spy script
will reactivate the inception app when the current 3D app exits.

Prevent user access to OS shell. The inception attack runs
shell scripts to detect when the user exits an app and then activates
the inception app, and to collect configuration information of the
headset to replicate the home environment at a high precision.
Disabling user access to the OS shell blocks an attacker from these
scripts, which would reduce the effectiveness and stealthiness of
the inception attack. However, doing so also disables legitimate
headset users from communicating with the OS, e.g. the user can no
longer run customized processes, kill processes, or change system
settings.

7.2 Defenses via Anomaly Detection
If the attack bypasses prevention methods and the inception app
executes on the headset, detection can mitigate harm, for example,
by quitting all apps or restarting the device when the attack is
detected (either done by the system automatically or by prompting
the user to do so). The inception app would be constantly calling
other apps, which can leave traces in control flow and performance.
We discuss two directions and consider their limitations.

Control flow monitoring. When app calling is supported for
non-system apps, it enables the inception app to call other apps to
implement low-cost app replication (i.e., option 1 and 2). A detection
mechanism can exploit app behaviors, as the inception app poten-
tially raises suspicion with more frequent and diverse app calling
than legitimate apps. However, apps have complex and user-driven
flows, which poses challenges to benchmarking a benign control
flowmeasurement. Also, as VR integrates more into workflows, app
calling between legitimate apps may become more common, mak-
ing the distinction harder to detect. Hence, detection mechanisms
relying on control flow may generate many false alarms.

Performance profiling. Performance statistics like delay and
power consumption may increase when the inception app is run-
ning. Measuring these metrics may provide information that aids
detection. The system could monitor parameters like CPU/GPU
usage, memory access patterns, system calls, API calls, etc., to es-
tablish a baseline, and alert if performance deviates significantly.
However, with the unpredictable nature of user behavior, these
metrics are inherently noisy and the detection mechanism is likely
inaccurate. Moreover, the attacker’s ability to adapt can introduce
further challenges, as the inception app could be carefully crafted

2024-03-12 01:11. Page 13 of 1–15.

to mimic the performance profile of benign apps, making detection
more intractable.

Educating users. Users might notice subtle anomalies but dis-
miss them as bugs or glitches (see our user study in §6). Inception
may be detected if users are aware of this form of attack and are
alert to minor changes in appearance or experience. However, user
detection of cyber attacks tends to be challenging and unreliable
in general. Specifically for VR, with users accustomed to imperfect
VR systems, this defense is unlikely to be effective.

7.3 Defenses via Hardware
We also consider hardware defenses, which provide an offline layer
of security independent of potentially compromised software. We
discuss a few strategies as follows.

Regular headset restarts. Restarting the headset will kill the
process running the inception app and make the attack dormant
until it is launched again. Although it does not remove the inception
app, it mitigates potential harm by reducing the active time of the
attack. A downside of this defense is significant interruptions on
user experience, since users prefer to resume their progress from
the last time they took off the headset.

Regular hard resets. Hard-resetting the headset wipes the de-
vice and hence completely removes the inception app and spy
scripts. The adversary would need to inject the inception app again
to attack the user. We note that this is quite an extreme defense,
since wiping the device significantly disrupts user experience.

7.4 Combining Defenses
While development of VR hardware and software platforms is still
in its early days, it is clear that they are missing many of the security
mechanisms we take for granted on traditional network applica-
tions. A strong defense against inception attacks ultimately requires
a combination of tools for prevention, detection and mitigation. Our
discussion above includes a long list of security improvements that
can be used to build parts of a multifaceted defense against incep-
tion attacks, each of which will require careful consideration of
tradeoffs between security and usability/performance.

While each VR platform/vendor will no doubt make their own
decisions with respect to security and protective measures, we
suggest considering the following five steps.
• Disable sideloading
• Enforce app certificates
• Disable app calls by non-system apps / validate app calls
• Encrypt network traffic
• Regular headset restarts

8 CONCLUSION
In this paper, we introduced and described inception attacks, a pow-
erful class of attacks feasible on the most popular virtual reality
systems today. We described an implemention that eavesdrops and
modifies everything that the user sees or hears, but also everything
sent by the user to VR apps. The result is a wide array of personal-
ized misinformation attacks, from misrepresenting a user’s bank
balances and changing value of financial transactions, to VR chat

apps that modify interactions with other users, so that two parties
experience two completely different versions of the same conver-
sation. Finally, results of our user studies validated the potency of
these attacks in real world settings.

Looking forward, we believe there is still enough time to design
and implement multiple security measures to dramatically reduce
both the expected proliferation of these attacks as well as the dam-
age they inflict. But the clock is ticking. Each new generation of VR
hardware will bring increasing computational power, which will
in turn enable more powerful inception attacks (e.g. an attacker re-
placing a VR user with seamless, real-time injection of a generative
AI version of their voice). VR platforms and developers need to act
now to not only improve security on VR systems, but also work to
educate their users about the potential security risks they face on
these platforms.

REFERENCES
[1] 2024. Public APIs. https://github.com/public-apis/public-apis
[2] Anjuna. 2023. Secure Enclaves: The Powerful Way to Make Data Secure by

Default. https://www.anjuna.io/resources/what-is-a-secure-enclave
[3] Apple. 2024. Vision Pro. https://www.apple.com/apple-vision-pro/
[4] AstricStore. 2024. App Launcher. https://assetstore.unity.com/packages/tools/

integration/app-launcher-20454
[5] Harry Baker. 2021. SideQuest for Oculus Quest: Everything You Need To Know.

https://www.uploadvr.com/everything-you-need-to-know-sidequest
[6] Bharat Bhushan, G. Sahoo, and Amit Kumar Rai. 2017. Man-in-the-middle attack

in wireless and computer networking — A review. In Proc. of ICACCA.
[7] Abraham G. Campbell, Thomas Holz, John A. Cosgrove, Mike Harlick, and Tadhg

O’Sullivan. 2019. Uses of Virtual Reality for Communication in Financial Services:
A Case Study on Comparing Different Telepresence Interfaces: Virtual Reality
Compared to Video Conferencing. LNNS (2019).

[8] Peter Casey, Ibrahim Baggili, and Ananya Yarramreddy. 2021. Immersive Virtual
Reality Attacks and the Human Joystick. IEEE Trans. Dependable Secure Comput.
18, 2 (2021), 550–562.

[9] Kaiming Cheng, Jeffery F. Tian, Tadayoshi Kohno, and Franziska Roesner. 2023.
Exploring User Reactions and Mental Models Towards Perceptual Manipulation
Attacks in Mixed Reality. In Proc. of USENIX Security.

[10] Mauro Conti, Nicola Dragoni, and Viktor Lesyk. 2016. A Survey of Man In The
Middle Attacks. IEEE Commun. Surv. Tutor 18, 3 (2016), 2027–2051.

[11] Paulo Costa. 2024. ADB Proxy. https://github.com/paulo-raca/adb-proxy
[12] Player Counter. 2024. VRChat Player Count And Statistics 2023. https://

playercounter.com/vrchat/
[13] Android Developers. 2024. Build web apps in WebView. https://developer.

android.com/develop/ui/views/layout/webapps/webview
[14] Android Developers. 2024. Connect to the network. https://developer.android.

com/develop/connectivity/network-ops/connecting
[15] Android Developers. 2024. Sending the user to another app. https://developer.

android.com/training/basics/intents/sending
[16] Brandon Falk, Yan Meng, Yuxia Zhan, and Haojin Zhu. 2021. POSTER: ReA-

vatar: Virtual Reality De-anonymization Attack Through Correlating Movement
Signatures. In Proc. of CCS.

[17] Adeel Faruki et al. 2019. Virtual reality as an adjunct to anesthesia in the operating
room. Trials 20 (2019), 782.

[18] flirtual. 2024. The first VR dating app. https://flirtu.al
[19] Martin Georgiev, Subodh Iyengar, Suman Jana, Rishita Anubhai, Dan Boneh, and

Vitaly Shmatikov. 2012. The Most Dangerous Code in the World: Validating SSL
Certificates in Non-Browser Software. In Proc. of CCS.

[20] Sindhu Reddy Kalathur Gopal, Diksha Shukla, James DavidWheelock, and Nitesh
Saxena. 2023. Hidden Reality: Caution, Your Hand Gesture Inputs in the Immer-
sive Virtual World are Visible to All!. In Proc. of USENIX Security.

[21] Christian Göttel, Pascal Felber, and Valerio Schiavoni. 2019. Developing Secure
Services for IoT with OP-TEE: A First Look at Performance and Usability. In Proc.
of DAIS.

[22] Saulius Griškėnas. 2023. Secure enclaves: The key to data security. https:
//nordvpn.com/blog/secure-enclave/

[23] IBM. 2024. What is an application programming interface (API)? https://www.
ibm.com/topics/api

[24] MIT Technology Review Insights. 2023. Augmenting the realities of
work. https://www.technologyreview.com/2023/11/29/1083726/augmenting-
the-realities-of-work/

2024-03-12 01:11. Page 14 of 1–15.

https://github.com/public-apis/public-apis
https://www.anjuna.io/resources/what-is-a-secure-enclave
https://www.apple.com/apple-vision-pro/
https://assetstore.unity.com/packages/tools/integration/app-launcher-20454
https://assetstore.unity.com/packages/tools/integration/app-launcher-20454
https://www.uploadvr.com/everything-you-need-to-know-sidequest
https://github.com/paulo-raca/adb-proxy
https://playercounter.com/vrchat/
https://playercounter.com/vrchat/
https://developer.android.com/develop/ui/views/layout/webapps/webview
https://developer.android.com/develop/ui/views/layout/webapps/webview
https://developer.android.com/develop/connectivity/network-ops/connecting
https://developer.android.com/develop/connectivity/network-ops/connecting
https://developer.android.com/training/basics/intents/sending
https://developer.android.com/training/basics/intents/sending
https://flirtu.al
https://nordvpn.com/blog/secure-enclave/
https://nordvpn.com/blog/secure-enclave/
https://www.ibm.com/topics/api
https://www.ibm.com/topics/api
https://www.technologyreview.com/2023/11/29/1083726/augmenting-the-realities-of-work/
https://www.technologyreview.com/2023/11/29/1083726/augmenting-the-realities-of-work/

[25] Lasse Jensen and Flemming Konradsen. 2018. A review of the use of virtual reality
head-mounted displays in education and training. Education and Information
Technologies 23 (07 2018), 1–15.

[26] kiraio moe. 2024. Remove Unity Splash Screen. https://github.com/kiraio-
moe/remove-unity-splash-screen

[27] Katleho Limakatso. 2023. How Virtual and Augmented Reality Are Chang-
ing Healthcare. https://healthnews.com/news/virtual-and-augmented-reality-
boom-in-healthcare/

[28] Zhen Ling, Zupei Li, Chen Chen, Junzhou Luo, Wei Yu, and Xinwen Fu. 2019. I
Know What You Enter on Gear VR. In Proc. of IEEE CNS.

[29] Shiqing Luo, XinyuHu, and Zhisheng Yan. 2022. HoloLogger: Keystroke Inference
on Mixed Reality Head Mounted Displays. In Proc. of IEEE VR.

[30] Jämes Ménétrey, Aeneas Grüter, Peterson Yuhala, Julius Oeftiger, Pascal Felber,
Marcelo Pasin, and Valerio Schiavoni. 2024. A Holistic Approach for Trustworthy
Distributed Systems with WebAssembly and TEEs. In Proc. of OPODIS.

[31] Meta. 2024. Build Immersive Audio Experiences with Audio SDK.
https://developer.oculus.com/blog/build-immersive-audio-experiences-
meta-quest-sdk/

[32] Meta. 2024. Expand your world with Meta Quest. https://www.meta.com/quest/
[33] Meta. 2024. Meta Quest Browser. https://www.meta.com/experiences/

1916519981771802/
[34] Meta. 2024. Meta Quest for Business. https://forwork.meta.com/quest/business-

subscription/
[35] Meta. 2024. Tracked keyboards for Meta Quest. https://www.meta.com/

help/quest/articles/headsets-and-accessories/meta-quest-accessories/tracked-
keyboards-meta-quest/

[36] Meta. 2024. WHY CREATE IN VR?: Increase the pace of innovation. https:
//forwork.meta.com/vr-creativity-design

[37] Frozen Mist. 2024. FMETP STREAM. https://frozenmist.com/docs/apis/fmetp-
stream/

[38] Monado. 2024. Monado - OpenXR Runtime. https://monado.dev
[39] Gonzalo Munilla Garrido, Vivek Nair, and Dawn Song. 2024. SoK: Data Privacy

in Virtual Reality. Proc. of PETS 2024, 1 (2024), 21–40.
[40] Vivek Nair, Gonzalo Munilla Garrido, Dawn Song, and James O’Brien. 2023.

Exploring the Privacy Risks of Adversarial VR Game Design. Proc. of PETS 2023,
4 (2023), 238–256.

[41] Nmap. 2024. NMAP.ORG. https://nmap.org
[42] Marten Oltrogge, Nicolas Huaman, Sabrina Amft, Yasemin Acar, Michael Backes,

and Sascha Fahl. 2021. Why Eve and Mallory Still Love Android: Revisiting TLS
(In)Security in Android Applications. In Proc. of USENIX Security.

[43] OpenHMD. 2024. Welcome to OpenHMD.net. http://www.openhmd.net
[44] Thierry Pul. 2024. How to Easily Sideload a VR App (.apk) to Pico Headsets. https:

//headjack.io/knowledge-base/how-to-sideload-a-vr-app-to-pico-headsets/
[45] Meta Quest. 2024. Interaction SDK Overview. https://developer.oculus.com/

documentation/unity/unity-isdk-interaction-sdk-overview/
[46] Jaziar Radianti, Tim A. Majchrzak, Jennifer Fromm, and Isabell Wohlgenannt.

2020. A systematic review of immersive virtual reality applications for higher
education: Design elements, lessons learned, and research agenda. Computers &
Education 147 (2020), 103778.

[47] Mohd Sabra, Nisha Vinayaga Sureshkanth, Ari Sharma, Anindya Maiti, and
Murtuza Jadliwala. 2023. Exploiting Out-of-band Motion Sensor Data to De-
anonymize Virtual Reality Users. CoRR abs/2301.09041 (2023).

[48] Joachim Schuster. 2024. Check the computer’s RSA key fingerprint. https:
//joachimschuster.de/posts/debug-on-device-rsa-fingerprint/

[49] Apple Platform Security. 2021. Secure Enclave. https://support.apple.com/guide/
security/secure-enclave-sec59b0b31ff/1/web/1

[50] Maliheh Shirvanian and Nitesh Saxena. 2014. Wiretapping via Mimicry: Short
Voice Imitation Man-in-the-Middle Attacks on Crypto Phones. In Proc. of CCS.

[51] SideQuest. 2022. SideQuest Turns 3: New Features & 2.2 Million Monthly Active
Users. https://www.uploadvr.com/sidequest-turns-3-sponsored/

[52] SideQuest. 2024. Custom Home. https://sidequestvr.com/apps/customhome/0/
rating

[53] Bill Siwicki. 2023. What the metaverse and virtual reality can contribute to
healthcare. https://www.healthcareitnews.com/news/what-metaverse-and-
virtual-reality-can-contribute-healthcare

[54] Carter Slocum, Yicheng Zhang, Nael Abu-Ghazaleh, and Jiasi Chen. 2023. Going
through the motions: AR/VR keylogging from user head motions. In Proc. of
USENIX Security.

[55] Milan Stute, Sashank Narain, Alex Mariotto, Alexander Heinrich, David Kre-
itschmann, Guevara Noubir, and Matthias Hollick. 2019. A Billion Open Inter-
faces for Eve and Mallory: MitM, DoS, and Tracking Attacks on iOS and macOS
Through Apple Wireless Direct Link. In Proc. of USENIX Security.

[56] Maki Sugimoto. 2022. Cloud XR (Extended Reality: Virtual Reality, Augmented
Reality, Mixed Reality) and 5G Mobile Communication System for Medical Image-
Guided Holographic Surgery and Telemedicine. 381–387.

[57] Wen-Jie Tseng, Elise Bonnail, Mark McGill, Mohamed Khamis, Eric Lecolinet,
Samuel Huron, and Jan Gugenheimer. 2022. The Dark Side of Perceptual Manip-
ulations in Virtual Reality. In Proc. of CHI.

[58] Unity. 2024. Real-Time Development Platform. https://unity.com
[59] Unity. 2024. Unity UI: Unity User Interface. https://docs.unity3d.com/Packages/

com.unity.ugui@1.0/manual/index.html
[60] Verizon. 2023. 2023 Mobile Security Index white paper. (11 2023).
[61] VIVE. 2024. Installing APK files on the headset. https://www.vive.com/us/

support/focus3/category_howto/installing-apk-on-headset.html
[62] Martin Vondráček, Ibrahim Baggili, and Peter Casey. 2022. Rise of the Metaverse’s

Immersive Virtual Reality Malware and the Man-in-the-Room Attack & Defenses.
Computers & Security (09 2022).

[63] VRChat. 2024. Create, Share, Play. https://hello.vrchat.com
[64] VRVOYAGING. 2022. How to use a custom home environment in VR. https:

//www.vrvoyaging.com/how-to-use-a-custom-home-environment-in-vr
[65] Vuplex. 2024. 3D WebView: the ultimate cross-platform web browser for Unity.

https://developer.vuplex.com/webview/overview
[66] Jialin Wang, Rongkai Shi, Wenxuan Zheng, Weijie Xie, Dominic Kao, and Hai-

Ning Liang. 2023. Effect of Frame Rate on User Experience, Performance, and
Simulator Sickness in Virtual Reality. IEEE Trans. Vis. Comput. Graph. 29, 5 (2023),
2478–2488.

[67] Wikipedia. 2024. HTC Vive. https://en.wikipedia.org/wiki/HTC_Vive
[68] Wikipedia. 2024. Oculus Rift. https://en.wikipedia.org/wiki/Oculus_Rift
[69] Wikipedia. 2024. Sideloading. https://en.wikipedia.org/wiki/Sideloading
[70] Zhuolin Yang, Zain Sarwar, Iris Hwang, Ronik Bhaskar, Ben Y. Zhao, and Haitao

Zheng. 2024. CanVirtual Reality Protect Users fromKeystroke Inference Attacks?
[71] Zelle. 2024. How to send money with Zelle. https://www.zellepay.com
[72] Tianfang Zhang et al. 2023. FaceReader: Unobtrusively Mining Vital Signs and

Vital Sign Embedded Sensitive Info via AR/VR Motion Sensors. In Proc. of CCS.
[73] ZIMPERIUM. 2024. Sideloading. https://www.zimperium.com/glossary/

sideloading/

2024-03-12 01:11. Page 15 of 1–15.

https://github.com/kiraio-moe/remove-unity-splash-screen
https://github.com/kiraio-moe/remove-unity-splash-screen
https://healthnews.com/news/virtual-and-augmented-reality-boom-in-healthcare/
https://healthnews.com/news/virtual-and-augmented-reality-boom-in-healthcare/
https://developer.oculus.com/blog/build-immersive-audio-experiences-meta-quest-sdk/
https://developer.oculus.com/blog/build-immersive-audio-experiences-meta-quest-sdk/
https://www.meta.com/quest/
https://www.meta.com/experiences/1916519981771802/
https://www.meta.com/experiences/1916519981771802/
https://forwork.meta.com/quest/business-subscription/
https://forwork.meta.com/quest/business-subscription/
https://www.meta.com/help/quest/articles/headsets-and-accessories/meta-quest-accessories/tracked-keyboards-meta-quest/
https://www.meta.com/help/quest/articles/headsets-and-accessories/meta-quest-accessories/tracked-keyboards-meta-quest/
https://www.meta.com/help/quest/articles/headsets-and-accessories/meta-quest-accessories/tracked-keyboards-meta-quest/
https://forwork.meta.com/vr-creativity-design
https://forwork.meta.com/vr-creativity-design
https://frozenmist.com/docs/apis/fmetp-stream/
https://frozenmist.com/docs/apis/fmetp-stream/
https://monado.dev
https://nmap.org
http://www.openhmd.net
https://headjack.io/knowledge-base/how-to-sideload-a-vr-app-to-pico-headsets/
https://headjack.io/knowledge-base/how-to-sideload-a-vr-app-to-pico-headsets/
https://developer.oculus.com/documentation/unity/unity-isdk-interaction-sdk-overview/
https://developer.oculus.com/documentation/unity/unity-isdk-interaction-sdk-overview/
https://joachimschuster.de/posts/debug-on-device-rsa-fingerprint/
https://joachimschuster.de/posts/debug-on-device-rsa-fingerprint/
https://support.apple.com/guide/security/secure-enclave-sec59b0b31ff/1/web/1
https://support.apple.com/guide/security/secure-enclave-sec59b0b31ff/1/web/1
https://www.uploadvr.com/sidequest-turns-3-sponsored/
https://sidequestvr.com/apps/customhome/0/rating
https://sidequestvr.com/apps/customhome/0/rating
https://www.healthcareitnews.com/news/what-metaverse-and-virtual-reality-can-contribute-healthcare
https://www.healthcareitnews.com/news/what-metaverse-and-virtual-reality-can-contribute-healthcare
https://unity.com
https://docs.unity3d.com/Packages/com.unity.ugui@1.0/manual/index.html
https://docs.unity3d.com/Packages/com.unity.ugui@1.0/manual/index.html
https://www.vive.com/us/support/focus3/category_howto/installing-apk-on-headset.html
https://www.vive.com/us/support/focus3/category_howto/installing-apk-on-headset.html
https://hello.vrchat.com
https://www.vrvoyaging.com/how-to-use-a-custom-home-environment-in-vr
https://www.vrvoyaging.com/how-to-use-a-custom-home-environment-in-vr
https://developer.vuplex.com/webview/overview
https://en.wikipedia.org/wiki/HTC_Vive
https://en.wikipedia.org/wiki/Oculus_Rift
https://en.wikipedia.org/wiki/Sideloading
https://www.zellepay.com
https://www.zimperium.com/glossary/sideloading/
https://www.zimperium.com/glossary/sideloading/

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 VR for Non-Gaming Applications
	2.2 Existing Attacks in VR

	3 Inception Attacks
	3.1 Threat Models and Points of Entry
	3.2 Attack Variants

	4 Implemention on Meta VR Headsets
	4.1 Attack Overview
	4.2 Preliminaries: Meta Quest VR
	4.3 Bootstrapping
	4.4 Replicating the Home Environment
	4.5 Replicating Applications
	4.6 Entering Inception

	5 Specific App Replications and Attack Instances
	5.1 Meta Quest Browser
	5.2 VRChat
	5.3 Discussion

	6 Evaluation: User Study
	6.1 Study Setup
	6.2 Results

	7 Potential Defenses
	7.1 Defenses via Prevention
	7.2 Defenses via Anomaly Detection
	7.3 Defenses via Hardware
	7.4 Combining Defenses

	8 Conclusion
	References

